UNIVERSIDADE FEDERAL DO PARANÁ

MODELO MATEMÁTICO PARA OTIMIZAÇÃO DOS CUSTOS OPERACIONAIS DE TRANSPORTE DE TORAS COM BASE NA QUALIDADE DE ESTRADAS.

CURITIBA 2010

RAFAEL ALEXANDRE MALINOVSKI

MODELO MATEMÁTICO PARA OTIMIZAÇÃO DOS CUSTOS OPERACIONAIS DE TRANSPORTE DE TORAS COM BASE NA QUALIDADE DE ESTRADAS.

Tese apresentada como requisito parcial à obtenção do grau de Doutor em Ciências Florestais, Curso de Pós-Graduação em Engenharia Florestal, Setor de Ciências Agrárias, Universidade Federal do Paraná.

Orientador: Prof. Dr. Dartagnan Baggio Emerenciano

Co-orientadores:

Prof. Dr. Jorge Roberto Malinovski

Prof. Dr. José Maderna Leite

CURITIBA 2010

AGRADECIMENTOS

À Deus por tudo.

Aos meus pais Jorge e Nasaret, aos meus irmãos Lu e Ricardo, à minha cunhada Ludi e afiliada Valentina e à minha noiva Chrys pelo amor, carinho, apoio e incentivo.

À UFPR pela oportunidade.

Ao meu Orientador Dartagnan pelo incentivo e aos meus Coorientadores Jorge e Maderna pelas discussões.

À banca examinadora composta pelos professores Dr. Paulo Fenner, Dr. Fernando Seixas, Dr. Dagoberto Stein de Quadros e Dr. Romano Timofeiczyk Junior pelas críticas construtivas.

À Klabin, nas pessoas de José Totti e especialmente ao Darlon pelo apoio e auxílio na elaboração do modelo matemático, e à equipe de Abastecimento de Madeira ABMA: Jacílio, Quirino, Raphael Bortolazzo, Gerson, Nilson, Eduardo, Antônio, Felipe, Ricardo, Bettes, Edson, Ismair, Maurício, Jurandir, Rivair, e Jorge Belinoski pela amizade e pelo aprendizado.

À empresa Noma, na pessoa do Kimio, pelas importantes informações para a elaboração deste trabalho.

Ao José, à Bia, à Isa, ao Paulo, ao Nene e à Arlete da Pousada Monte Crista em Garuva pela tranquilidade e ao Monte Crista pela inspiração para escrever esta tese.

RESUMO

Este trabalho teve como objetivo desenvolver um modelo matemático de otimização dos custos operacionais de estradas de uso florestal e de transporte na produção de madeira oriunda de florestas plantadas e definir uma sistemática para a coleta e tratamento dos dados a serem inseridos nas equações. O modelo foi desenvolvido em programação linear inteira mista utilizando-se os softwares Extend LINGO/PC v7.0 e Planilha Microsoft Excel 2003. A sistemática consistiu em calcular os limites operacionais em relação às rampas máximas possíveis de serem vencidas para 4 diferentes tipos de Composições Veiculares de Carga -CVC: Tritrem, Rodotrem (19,80m), Bitrem e Romeu e Julieta (4 eixos), em dois tipos básicos de pavimentos comumente utilizados na área florestal: leito natural e revestimento primário. Os limites de rampa e o tipo de pavimento foram conjugados em 8 graus de dificuldades, onde definiu-se a operacionalidade de cada CVC em cada grau. Para um conjunto de projetos e talhões florestais definidos, foram caracterizadas todas as estradas possíveis de serem utilizadas e medidas suas rampas. Fez-se o planejamento operacional das áreas e quantificou-se quanto de cada estrada estava em cada grau de dificuldade, bem como os volumes de madeira que estavam em cada estrada classificada. Foram calculados os custos para transformar as estradas de um grau de maior dificuldade em menor dificuldade, liberando assim o transporte das CVC de maior tonelagem. Também foram calculados os custos de frete de cada projeto para a unidade industrial e utilizados os custos das operações de baldeio e de apoio ao transporte da região de estudo. Foram elaborados cinco cenários condizentes com a realidade operacional de uma empresa de base florestal da região sul do Brasil. onde foram simuladas operações com o peso legal e o peso técnico sobre os eixos de tração dos caminhões, operações com e sem tratores com guincho para dar apoio, operações com aumento da potência e da força de tração dos cavalos mecânicos das CVC e operações com o aumento de investimentos nas estradas das rotas que ligam a unidade industrial aos projetos florestais. O modelo conseguiu resolver todos cenários propostos, mostrando-se como uma ferramenta apropriada para auxílio na tomada de decisões no planejamento logístico florestal. O cenário I, que considerou que as CVC trafegaram com PBTC legal, potencia dos cavalos mecânicos similar a utilizada pelas empresas prestadoras de serviço do local de estudo, sem apoio de uma máquina (skidder) e sem investimentos na rota, apresentou o menor custo otimizado. De forma geral, entre as CVC avaliadas, o Tritrem foi a mais indicada para o transporte de madeira nos cinco cenários. A utilização de uma restrição de garantia de 50% do volume de madeira disponível em estradas com revestimento primário, representou um aumento de 10,6% dos custos quando simulados no cenário I. Para a região estudada, o aumento da potencia do cavalo mecânico e a quantia simulada de investimentos nas rotas de acesso aos projetos não resultaram em redução de custos sendo que a utilização do peso técnico sobre os eixos de tração das composições aumentou o limite de rampa vencido pelas CVC, mas não agregou resultado guando realizada junto com o apoio de trator com guincho.

Palavras-chave: transporte de madeira, estradas de uso florestal, otimização de custos

ABSTRACT

This study has the objective to develop an optimization model of the operational costs of forestry roads and wood transportation in the production of wood from planted forests and establish a system for collecting and processing the data to be inserted in the equations. The model was developed in mixed integer linear programming using the Extend software LINGO/PC v7.0 and Microsoft Excel Worksheet 2003. The systematic consisted of calculating operational limits in relation to maximum possible slopes to four different types of forestry trucks (CVC): Tritrem (9 axes), Rodotrem (9 axes), Bitrem (7 axes) and Romeu e Julieta (7 axes) in two basic types of floor coverings commonly used in forestry roads: natural and primary coating. The limits of slope and type of covering were combined into eight levels of difficulty, where was defined the operation of each CVC in each grade. For a set of defined projects and forest stands were characterized all roads that may be used and measures their gradients. The operational planning in the stands was done to quantify how much each road was in every degree of difficulty and the volumes of wood that were classified in each road. It was calculated the costs for transforming the roads of a higher degree of difficulty to lower difficulty, the transport of larger forestry truck. Also were calculated the transportation costs of each project to the plant and used the handling and tractor with winch operational cost from the study area. Five scenarios were developed consistent with the operational reality of a forestry company based in southern of Brazil, where operations were simulated with the legal weight and technical weight over the trucks traction axels, operations with and without tractors equipped with winches to pull the trucks in high slopes, with increased power and traction force of trucks and operations with increased investment in road routes that link the plant to forest projects. The model could solve all scenarios proposed demonstrating as an appropriate tool to aid in decision-making in forest planning logistics. The scenario I, that considered the legal weight, without increased power and traction force of trucks, without tractors equipped with winches and without increased investment in road routes presented the lower optimized cost. Generalizing between CVC evaluated, the Tritrem was the most suitable for timber transport in the five scenarios. The use of a restriction of guaranteed 50% of the volume of wood available on roads with primary coating, increased 10.6% the costs when simulated in scenario I. For the study area, increasing the power of the trucks and the investment in access routes to the projects did not result in cost reduction, and the use of technical weight on the traction axles of trucks increased the limit to overcome the CVC gradients, but did not aggregate results when conducted with the support of tractor with winch.

Keywords: wood transportation, forestry roads, cost optimization

LISTA DE FIGURAS

FIGURA 1: LOCALIZAÇÃO DA ÁREA DE ESTUDO	62
FIGURA 2: DIMENSÕES DO BITREM (medidas em mm)	65
FIGURA 3: DIMENSÕES DO TRITREM (medidas em mm)	66
FIGURA 4: DIMENSÕES DO ROMEU E JULIETA - 4 EIXOS (medidas	
em mm)	67
FIGURA 5: DIMENSÕES DO RODOTREM	68
FIGURA 6: DIMENSÕES DO RODOTREM HOMOLOGADO (medidas	
em mm)	68
FIGURA 7: TIMBER HAULER VOLVO A30E COM REBOQUE	71
FIGURA 8: FOTO ILUSTRATIVA DE OPERAÇÃO DE APOIO COM	
TRATOR FLORESTAL TIPO SKIDDER	72

LISTA DE TABELAS E GRÁFICOS

TABELA 01: CLASSIFICAÇÃO DE ESTRADA FLORESTAL ADOTADA NO SISTEMA AUSTRÍACO	9
TABELA 02: CLASSIFICAÇÃO DE ESTRADA FLORESTAL ADOTADA PELA HIWASSEE LAND COMPANY - EUA	9
TABELA 03: CLASSES DE DECLIVIDADE E TIPOS DE RELEVO	4
TABELA 04: AVALIAÇÃO QUALITATIVA DA IRREGULARIDADE E VALOR DO IRI	5
TABELA 05: COMPOSIÇÕES HOMOLOGADAS PARA O TRANSPORTE DE CARGA	9
TABELA 06: COMPOSIÇÕES QUE NECESSITAM DE AUTORIZAÇÃO ESPECIAL DE TRÂNSITO – AET4	0
TABELA 07: COEFICIENTE DE ATRITO ESTÁTICO4	6
TABELA 08: VALORES DE COEFICIENTE DE RESISTÊNCIA AO ROLAMENTO (RRS)	7
TABELA 09: PROJETOS FLORESTAIS AVALIADOS NO ESTUDO DE CASO	3
TABELA 10: ESPECIFICAÇÕES TÉCNICAS DAS CVC AVALIADAS E UTILIZADAS	4
TABELA 11: QUANTIDADE DE ESTRADAS DENTRO DOS PROJETOS FLORESTAIS	9
TABELA 12: ESTRADAS DAS ROTAS ENTRE OS PROJETOS E A UNIDADE INDUSTRIAL	0
TABELA 13: RELAÇÃO DE CENÁRIOS ESTUDADOS7	
TABELA 14: EXEMPLO DE PARAMETRIZAÇÃO DOS GRAUS DE DIFICUI DADE (GD) POR CENÁRIO 8	3

TABELA 15: EXEMPLO DE REGRA DE TRANSPORTE PARA AS DIFERENTES CVC	84
	04
TABELA 16: EXEMPLO DE CUSTO DE FRETE DE MADEIRA CALCULADOS POR PROJETO FLORESTAL	86
TABELA 17: RAMPAS MÁXIMAS VENCIDAS PELAS CVC	
CARREGADAS NO CENÁRIO I	90
TABELA 18: RAMPAS MÁXIMAS VENCIDAS PELAS CVC VAZIAS	90
TABELA 19: PARAMETRIZAÇÃO DOS GRAUS DE DIFICULDADE PARA O CENÁRIO I	91
TABELA 20: REGRA DE TRANSPORTE PARA AS CVC NO CENÁRIO I	
	02
TABELA 21: QUANTIFICAÇÃO DAS ESTRADAS POR GRAU DE DIFICULDADE PARA O CENÁRIO I	93
TABELA 22: QUANTIFICAÇÃO DOS VOLUMES DE MADEIRA POR	
GRAU DE DIFICULDADE PARA O CENÁRIO I	93
TABELA 23: ESTIMATIVA DOS CUSTOS DE FRETE POR CVC PARA	
O CENÁRIO I	94
TABELA 24: CUSTO PADRÃO DE ADEQUAÇÃO DE ESTRADAS	
DENTRO DOS PROJETOS PARA O CENÁRIO I	95
TABELA 25: VOLUME MÍNIMO DE MADEIRA PARA SEGURANÇA NO	
TRANSPORTE	96
TABELA 26: CUSTO TOTAL OTIMIZADO DO CENÁRIO I	97
TABELA 27: VOLUME TRANSPORTADO POR CVC NO CENÁRIO I	97
TABELA 28: VOLUMES MÍNIMOS DE SEGURANÇA PÓS	
ADEQUAÇÃO E BALDEIO PARA O CENÁRIO I	98
TABELA 29: QUANTIDADE DE ESTRADAS ADEQUADAS POR GRAU	
DE DIFICULDADE NO CENÁRIO I	99
TABELA 30: CUSTO TOTAL OTIMIZADO DO CENÁRIO I SEM	
GARANTIA DE MADEIRA PARA TRANSPORTE EM DIAS DE CHUVA	99

TABELA 31: VOLUMES MÍNIMOS DE SEGURANÇA PÓS ADEQUAÇÃO E BALDEIO PARA O CENÁRIO I	100
TABELA 32: RAMPAS MÁXIMAS VENCIDAS PELAS CVC CARREGADAS NO CENÁRIO II	101
TABELA 33: PARAMETRIZAÇÃO DOS GRAUS DE DIFICULDADE PARA O CENÁRIO II	102
TABELA 34: REGRA DE TRANSPORTE PARA AS CVC NO CENÁRIO	103
TABELA 35: QUANTIFICAÇÃO DAS ESTRADAS POR GRAU DE DIFICULDADE PARA O CENÁRIO II	103
TABELA 36: QUANTIFICAÇÃO DOS VOLUMES DE MADEIRA POR GRAU DE DIFICULDADE PARA O CENÁRIO II	104
TABELA 37: CUSTO PADRÃO DE ADEQUAÇÃO DE ESTRADAS DENTRO DOS PROJETOS PARA O CENÁRIO II	105
TABELA 38: CUSTO TOTAL OTIMIZADO DO CENÁRIO II	106
TABELA 39: VOLUME TRANSPORTADO POR CVC NO CENÁRIO II	107
TABELA 40: VOLUMES MÍNIMOS DE SEGURANÇA PÓS ADEQUAÇÃO E BALDEIO PARA O CENÁRIO II	108
TABELA 41: QUANTIDADE DE ESTRADAS ADEQUADAS POR GRAU DE DIFICULDADE NO CENÁRIO II	108
TABELA 42: CUSTO ESTIMADO DO FRETE PARA O CENÁRIO III	110
TABELA 43: CUSTO TOTAL OTIMIZADO DO CENÁRIO III	111
TABELA 44: RAMPAS MÁXIMAS VENCIDAS PELAS CVC CARREGADAS NO CENÁRIO IV	113
TABELA 45: ESTIMATIVA DOS CUSTOS DE FRETE POR CVC PARA O CENÁRIO IV	114
TABELA 46: CUSTO TOTAL OTIMIZADO DO CENÁRIO IV	114

TABELA 47: RAMPAS MÁXIMAS VENCIDAS PELAS CVC CARREGADAS COM PESO TÉCNICO SOBRE OS EIXOS DE	
TRAÇÃO, MAIS <i>SKIDDER</i> DE APOIO NO CENÁRIO V	116
TABELA 48: RAMPAS MÁXIMAS VENCIDAS PELAS CVC CARREGADAS COM PESO TÉCNICO SOBRE O EIXO DE TRAÇÃO NO CENÁRIO V	. 117
TABELA 49: GANHOS PERCENTUAIS EM RAMPA DO PESO TÉCNICO EM RELAÇÃO AO PESO LEGAL	. 117
TABELA 50: PARAMETRIZAÇÃO DOS GRAUS DE DIFICULDADE PARA O CENÁRIO V	.118
TABELA 51: REGRA DE TRANSPORTE PARA AS CVC NO CENÁRIO V	. 119
TABELA 52: QUANTIFICAÇÃO DAS ESTRADAS POR GRAU DE DIFICULDADE PARA O CENÁRIO V	. 119
TABELA 53: QUANTIFICAÇÃO DOS VOLUMES DE MADEIRA POR GRAU DE DIFICULDADE PARA O CENÁRIO V	. 120
TABELA 54: CUSTO PADRÃO DE ADEQUAÇÃO DE ESTRADAS PARA O CENÁRIO V	. 121
TABELA 55: CUSTO TOTAL OTIMIZADO DO CENÁRIO V	. 122
TABELA 56: VOLUME TRANSPORTADO POR CVC	. 123
TABELA 57: VOLUMES MÍNIMOS DE SEGURANÇA PÓS ADEQUAÇÃO E BALDEIO PARA O CENÁRIO V	. 123
TABELA 58: QUANTIDADE DE ESTRADAS ADEQUADAS POR GRAU	
DE DIFICULDADE PARA O CENÁRIO V	. 124

LISTA DE SIGLAS E ABREVIATURAS

AASTHO – American Association of State Highway Officials (Associação Americana de Funcionários Estaduais de Entidades Rodoviárias).

Af - Área frontal projetada do veículo

AET – Autorização Especial de Trânsito

BT - Bitrem

Ca - Coeficiente aerodinâmico

CAT - Caterpillar

CONTRAN - Conselho Nacional de Trânsito

CVC – Composição Veicular de Carga

CMT - Capacidade Máxima de Tração

ECE – Economic Commission for Europe

Fad - Força de aderência

Fa - Resistência aerodinâmica

FAO – Food and Agriculture Organization (Organização das Nações Unidas para

Agricultura e Alimentação)

FR – Força Disponível na Roda

GD – Grau de Dificuldade

HDM - Highway Design and Maintenance Standards

hp – Horse Power

ICMS – Imposto de Circulação de Mercadorias e Serviços

IRI – Índice Internacional de Irregularidade

i – greide %

ic - Relação de redução da caixa de câmbio

i_d - Relação de redução no diferencial

kg - Quilograma

kgf – Quilograma força

Kgf.m – Quilograma força por metro

KWF – Kuratorium für Waldarbeit und Forsttechnik

kW - Quilowatt

m - metro

n - Rendimento da transmissão

NBR - Denominação de Norma da Associação Brasileira de Normas Técnicas (ABNT)

Nm - Newton x metro

P - peso incidente sobre o(s) eixo(s) de tração

PBT - Peso Bruto Total

PBTC - Peso Bruto Total Combinado

PLIM – Programação Linear Inteira Mista

PR - Paraná

pol - Polegadas

RD - Rodotrem

Rd - Raio dinâmico

Ri – Resistência de rampa

RJ – Romeu e Julieta (4 eixos)

Rr – Resistência ao rolamento

t - tonelada

TR - Torque na Roda

TT – Tritrem

V - Velocidade do veículo

ų - coeficiente de atrito (pneu x solo)

LISTA DE PALAVRAS ESTRANGEIRAS

Dolly – conjunto de eixos de suporte

Forwarder – trator florestal auto-carregável

Timber hauler – trator florestal para transporte de toras fora de estrada

Harvester – trator florestal para corte, desgalhamento e processamento de árvores

Skidder – trator florestal para arraste de árvores ou apoio no transporte de madeira

Input – Entrada

Output - Saída

SUMÁRIO

1 INTRODUÇÃO	20
2 OBJETIVOS	23
2.1 OBJETIVO GERAL	23
2.2 OBJETIVOS ESPECÍFICOS	23
3 REVISÃO DA LITERATURA	24
3.1 PLANEJAMENTO FLORESTAL	24
3.2 LOGÍSTICA	25
3.3 REDE VIÁRIA FLORESTAL	26
3.3.1 Planejamento da rede viária	27
3.3.2 Classificação de estradas de uso florestal	28
3.3.2.1 Padronizado	28
3.3.2.2 Flexível	30
3.3.2.3 Codificado	30
3.3.2.4 Outras classificações de estradas florestais	31
3.3.3 Parâmetros de construção de estradas de uso florestal	32
3.3.3.1 Relevo do Terreno	33
3.3.3.2 Irregularidade (IRI)	35
3.4 TRANSPORTE	35
3.4.1 Classificação de veículos no transporte rodoviário	36
3.4.2 Legislação aplicada ao transporte de madeira	36
3.4.3. Peso por eixo	37
3.4.4 Autorização Especial de Trânsito - AET	40
3.4.5 Normas legais aplicadas ao transporte florestal rodoviário	42
3.4.6 Tipos de caminhões utilizados no transporte de madeira	42
3.4.7 Desempenho das composições veiculares de carga	43
3.4.7.1 Torque na roda (Tr)	44

3.4.7.2 Raio dinâmico (Rd)	44
3.4.7.3 Força disponível na roda (FR)	45
3.4.7.4 Força de aderência (Fad)	45
3.4.7.5 Forças restritivas	46
3.4.7.6 Resistência ao rolamento (Rr)	46
3.4.7.7 Resistência de rampa (Ri)	47
3.4.7.8 Resistência aerodinâmica (Fa)	48
3.4.7.9 Eficiência energética	48
3.4.8 Ciclo de transporte de madeira	49
3.5. EXTRAÇÃO DE MADEIRA	50
3.5.1. Baldeio de madeira	50
3.6 CUSTOS	51
3.6.1 Métodos de cálculo de custos operacionais	54
3.7 OTIMIZAÇÃO	55
3.7.1 Programação linear	55
3.7.2 Programação linear aplicada à logística florestal	56
4. MATERIAIS E MÉTODOS	61
4.1 MATERIAIS	61
4.1.1 Software e hardware para o modelo de programação linear	61
4.1.2 Dados utilizados para validação do modelo	61
4.1.2.1 Projetos florestais	63
4.1.2.2 Composições Veiculares de Carga – CVC	63
4.1.2.2.1 Especificações técnicas do Bitrem	65
4.1.2.2.2 Especificações técnicas do Tritrem	66
4.1.2.2.3 Especificações técnicas do Romeu e Julieta (4 eixos)	66
4.1.2.2.4 Especificações técnicas do Rodotrem	67
4.1.2.3 Estradas de uso florestal	69
4.1.2.4 Baldeio de madeira	70
	70
4.1.2.5 Apoio ao transporte	

4.2 MÉTODOS	. 73
4.2.1 Programação linear	.73
4.2.1.1 Função Objetivo	.73
4.2.1.1.1 Custos de adequação das estradas dentro dos projetos	.73
4.2.1.1.2 Custos de frete dos projetos até a unidade industrial	.74
4.2.1.1.3 Custos de adequação das estradas das rotas até a unidade industrial	.74
4.2.1.1.4 Custos de baldeio	.75
4.2.1.1.5 Síntese da função objetivo	.75
4.2.1.2 Restrições	.75
4.2.2 Cenários avaliados	.78
4.2.3 Metodologia empregada na obtenção da base cartográfica das estradas	.80
4.2.4 Classificação das estradas	.81
4.2.5 Cálculo das limitações técnicas de operação das CVC	.82
4.2.6 Critério de classificação das estradas em graus de dificuldade	.83
4.2.7 Regra de transporte	.84
4.2.8 Planejamento operacional dos projetos florestais	.84
4.2.9 Cálculo do custo de adequação das estradas dos projetos florestais	.85
4.2.10 Cálculo do custo do frete	.85
4.2.11 Custo do baldeio	.86
4.2.12 Custo do apoio	.86
4.2.13 Madeira disponível para transporte com tempo chuvoso (restrição	0
climática)	
4.2.14 Limitações de transporte de madeira por tipo de CVC	.88
5 RESULTADOS	. 89
5.1 CENÁRIO I	. 89
5.1.1 <i>Inputs</i> do Cenário I	.89
5.1.1.1 Cálculos dos limites técnicos de rampa de cada CVC	.89
5.1.1.2 Parametrização dos graus de dificuldade	.91
5.1.1.3 Regra de transporte	.92

5.1.1.4 Quantificação de estradas e volumes de madeira por grau de dificuldad	e.92
5.1.1.5 Estimativa do custo de frete	93
5.1.1.6 Estimativa dos custos de adequação de estradas dentro dos projetos	94
5.1.1.7 Estimativa dos custos de adequação da rota	95
5.1.1.8 Volumes mínimos de segurança de madeira disponíveis em estrada	as
com revestimento primário	95
5.1.1.9 Volumes máximos de transporte com o Rodotrem (19,80 m)	96
5.1.2 Outputs do Cenário I	96
5.1.2.1 Custo total otimizado	97
5.1.2.2 Utilização das CVC	97
5.1.2.3 Volumes de madeira baldeada	98
5.1.2.4 Quantificação de estradas adequadas	98
5.1.2.5 Custos para garantir o volume mínimo de segurança de madei	ira
disponível em estradas com revestimento primário	99
5.2 CENÁRIO II	. 100
5.2.1 Inputs do Cenário II	.100
5.2.1.1 Estimativa dos limites técnicos de rampa de cada CVC	.101
5.2.1.2 Parametrização dos graus de dificuldade	.102
5.2.1.3 Regra de transporte	.102
5.2.1.4 Quantificação de estradas e volumes de madeira por grau de dificuldad	e103
5.2.1.5 Estimativa do custo de frete e do apoio	.104
5.2.1.6 Estimativa dos custos de adequação de estradas dentro dos projetos	.104
5.2.1.7 Restrição de volumes mínimos de segurança e de transporte com	0
Rodotrem (19,80 m)	.105
5.2.2 Outputs do Cenário II	.106
5.2.2.1 Custo total otimizado	.106
5.2.2.2 Utilização das CVC	.107
5.2.2.3 Volumes de madeira baldeada	.107
5.2.2.4 Quantificação de estradas adequadas	.108
5.3 CENÁRIO III	. 109

5.3.1 Inputs do Cenário III	.109
5.3.1.1 Estimativa dos custos de adequação da rota	.109
5.3.1.2 Estimativa dos custos de frete	.110
5.3.2 Outputs do Cenário III	.111
5.3.2.1 Custo total otimizado	.111
5.4 CENÁRIO IV	. 112
5.4.1 Inputs do Cenário IV	.112
5.4.1.1 Estimativa dos limites técnicos de rampa de cada CVC	.112
5.4.1.2 Estimativa do custo de frete	.113
5.4.2 Outputs do Cenário IV	.114
5.4.2.1 Custo total otimizado	.114
5.5 CENÁRIO V	. 115
5.5.1 Inputs do Cenário V	.115
5.5.1.1 Estimativa dos limites técnicos de rampa de cada CVC	.116
5.5.1.2 Parametrização dos graus de dificuldade	.118
5.5.1.3 Regra de transporte	.118
5.5.1.4 Quantificação de estradas e volumes de madeira por grau de dificuldado	e119
5.5.1.5 Estimativa do custo de frete e do apoio	.120
5.5.1.6 Estimativa dos custos de adequação de estradas dentro dos projetos	.120
5.5.1.7 Restrição de volumes mínimos de segurança e de transporte com	0
Rodotrem (19,80 m)	.121
5.5.2 Outputs do Cenário V	.121
5.5.2.1 Custo total otimizado	.122
5.5.2.2 Utilização das CVC	.123
5.5.2.3 Volumes de madeira baldeada	.123
5.5.2.4 Quantificação de estradas adequadas	.124
6 CONCLUSÕES	. 125
7 RECOMENDAÇÕES	. 127
REFERÊNCIAS BIBLIOGRÁFICAS	. 128

ANEXO I - Estação de Referência localizada na COPEL em Guarapuava, PR	137
ANEXO II - Perfil vertical de um segmento de estrada	139
ANEXO III - Demonstrativo de cálculo de rampa (i -greide) vencidos pelas CV	'C
conforme o tipo de pavimento	141
ANEXO IV - Exemplo de Planejamento Operacional – Projeto Vila Preta	150
ANEXO V - Custo padrão de adequação de estradas e Tabela de Preços	-
Construção e Manutenção Estradas	152
ANEXO VI - Dados das CVC, premissas operacionais e cálculo do frete	156

1 INTRODUÇÃO

O setor florestal brasileiro é reconhecido como sendo um dos mais competitivos no âmbito mundial, sendo referência em produtividades e custos de florestas plantadas de pinus e eucaliptos, que são o principal insumo das indústrias de papel e celulose, de madeira serrada, de siderurgia, de painéis reconstituídos e de chapas.

Segundo o Anuário Estatístico da ABRAF (2009), em 2008 o Brasil possuía 6,12 milhões de hectares de plantios de eucaliptos e de pinus, que geraram exportações ao redor de 3% do PIB brasileiro a partir de um valor bruto da produção florestal equivalente a R\$ 52,8 bilhões. Foram consumidos 174,2 milhões de m³, sendo 32,8% pelo segmento celulose e papel, 19,7 % pelo segmento madeira serrada, 13,4% pelo segmento siderúrgico, 5,1% pelo segmento painéis reconstituídos, 3,6% pelo segmento compensado e 25,4% por outros segmentos.

Conforme o boletim técnico de preços de madeira e de serviços Radar Silviconsult, julho de 2010, o preço de madeira de eucaliptos em pé para processo no estado do Paraná era em média R\$ 40,90 / m³. Para o mesmo período os serviços de colheita e carga estavam em R\$ 18,80 / m³ e o custo do frete em R\$ 13,90 / m³ para uma distância de 50 km. Desta forma verifica-se que o valor da madeira em pé representou 56% do custo da matéria prima, e o valor de serviços 44% para uma distância relativamente curta. A medida que a distância aumenta os valores dos serviços também crescem aumentando o custo final da matéria prima posta nas indústrias.

Atrelado aos altos custos operacionais, o abastecimento de madeira também é influenciado fortemente pelas condições atmosféricas, o que exige planejamento antecipado e flexibilidade para a execução das operações, pois somente consegue-se manter competitividade em custos a partir da continuidade da produção dos recursos empregados.

Neste contexto, o planejamento da logística das operações florestais vem ganhando cada vez mais importância, pois desde a implantação das florestas, a construção, a adequação e a manutenção das estradas, o planejamento e a execução da colheita, o objetivo principal deve ser o escoamento da madeira produzida com o menor custo e a maior garantia de abastecimento possível.

Dentre as formas possíveis de se transportar a madeira produzida nos talhões até as unidades indústrias uma das mais utilizadas no Brasil é por meio do modal rodoviário. Existem diversos tipos de cavalos mecânicos atrelados a diferentes tipos de implementos, que formam as CVC – Composição Veiculares de Carga, disponíveis no mercado. Porém, a indicação da combinação ótima depende principalmente das condições operacionais em que serão realizadas as operações e a legislação vigente na região.

As CVC, que normalmente apresentam o menor custo por unidade transportada, são as que conseguem carregar maior quantidade de carga, mas cada qual apresenta restrições operacionais ligadas ao tipo de pavimento e a rampa máxima que conseguem vencer, tanto vazio como carregado, as quais limitam sua utilização em certas condições.

Outro aspecto importante é o peso sobre o eixo de tração dos caminhões, pois quanto maior este peso, maior a força aplicada sobre o pavimento, resultando em rampas mais acentuadas vencidas até o limite em que as forças de resistência (R) sejam iguais a força disponível na roda (FR) ou a força de aderência (Fad). Este peso é regulamentado pela legislação e todas as CVC que trafegam em vias públicas estão limitados a ele. Em determinadas condições, onde as estradas são particulares, é possível utilizar o peso técnico sobre o eixo de tração, aumentando os limites de rampa que podem ser superados pelas composições.

Para que se possa trafegar com as CVC nas estradas de uso florestal, fazse necessário o investimento de recursos financeiros para sua adequação e manutenção. Normalmente quanto maior o PBTC – Peso Bruto Total Combinado da CVC, maiores são as adequações que devem ser feitas, principalmente para a redução das rampas, e, em via de regra, quanto melhor for a qualidade da malha viária florestal mais produtiva será a operação de transporte de madeira.

Operacionalmente a logística florestal, além das CVC, conta com algumas opções para acessar locais mais íngremes ou com pavimentos mais restritivos. Uma delas é o baldeio que consiste em realizar um transporte primário da madeira para pátios intermediários onde existem condições apropriadas para a saída dos caminhões. A outra é o apoio com tratores equipados com guincho, que aumentam a força de tração das CVC fazendo com que consigam vencer rampas maiores em condições de pavimento menos favoráveis.

Dadas as possibilidades de usar um ou mais tipos de CVC para transportar madeira, de quanto se investir na adequação de estradas e poder-se utilizar ou não, tanto o baldeio quanto o apoio, que geram aumentos nos custos, e também de garantir a continuidade das operações em condições de chuva, a pergunta a ser respondida é: qual a combinação de recursos técnicos ideal que gera o menor custo logístico para uma determinada condição florestal?

2 OBJETIVOS

2.1 OBJETIVO GERAL

Desenvolver um modelo matemático para minimização dos custos de transporte de madeira considerando-se a qualidade das estradas florestais e elaborar cenários para sua validação.

2.2 OBJETIVOS ESPECÍFICOS

- Definir uma ferramenta para otimização matemática de custos;
- Definir variáveis operacionais e compor cenários para validação do modelo
- Elaborar uma sistemática para coleta e tratamento de dados a serem inseridos nas equações;
- Avaliar as limitações operacionais e os custos dos diferentes tipos de composições veiculares de carga utilizadas no transporte de madeira e
- Definir critérios de qualidade e custos operacionais das estradas de uso florestal conforme o tipo de composição utilizado no transporte de madeira.

3 REVISÃO DA LITERATURA

3.1 PLANEJAMENTO FLORESTAL

Segundo Gunn (1991) e Robak (1996), citados por Souza em 2004, o planejamento da produção florestal pode ocorrer em três níveis hierárquicos: estratégico, tático e operacional.

O planejamento estratégico tem como objetivo principal verificar os recursos florestais que a empresa necessitará ter a sua disposição e definir a capacidade de produção dos seus vários segmentos. As decisões estratégicas envolvem grandes investimentos, como a aquisição de terras e a construção ou expansão de uma fábrica (WEINTRAUB *et al*, 1986).

Já as decisões táticas estão relacionadas a quando, onde e como realizar a colheita de madeira para satisfazer os objetivos da empresa. Estas decisões devem levar em consideração as funções sociais, ambientais e econômicas da floresta (WEINTRAUB et al 1994). Gunn (1991) e Souza (2004) comentam que o planejamento tático pode ser dividido em pelo menos três tipos: tático de longo prazo, tático de médio prazo e tático de curto prazo. O planejamento tático de longo prazo visa garantir o abastecimento de madeira para a indústria, no longo prazo, e maximizar o valor presente líquido obtido com a floresta. Esse modelo é baseado em informações agregadas (estratos florestais) e incerteza de preços, mercado, crescimento econômico e tecnologia. O objetivo do planejamento tático de médio prazo é desenvolver um plano de colheita de madeira, construção de estradas e tratamentos silviculturais, específico para cada talhão que compõe os estratos. O planejamento tático de curto prazo especifica quais talhões devem ser cortados e como a madeira deve ser distribuída, para as fábricas e/ou consumidores, para maximizar os lucros. Neste modelo são considerados os custos de colheita e transporte de madeira, sazonalidade do mercado e disponibilidade de equipamentos; contudo, sua principal característica é o fato de não considerar o crescimento da floresta.

Por outro lado o planejamento operacional visa antecipar os problemas e estabelecer rotinas e alternativas operacionais para atingir as metas de produção

pré-estabelecidas (MACHADO; LOPES, 2002). Gunn (119) comenta que a alocação de máquinas florestais, equipes de trabalho e caminhões são exemplos de decisões operacionais.

Souza (2004), enfatiza que nas empresas florestais em que a madeira pode ser destinada para mais de que uma fábrica, o planejamento da colheita pode influenciar significativamente o fluxo de madeira e, conseqüentemente, os custos de transporte. O planejamento da colheita envolvendo decisões tais como: quais os pontos de produção cortar, quando cortar e quais equipes serão alocadas em cada ponto de produção

Para Arce (1997), o planejamento florestal principal requer decisões racionais, levando em consideração a disponibilidade de veículos, os produtos a serem transportados, as rotas a serem utilizadas, os horários de trabalho dos caminhões, os pontos de produção ou clientes, entre outras variáveis.

O planejamento da malha viária florestal deverá estar fundamentado por projetos adequados, visando reduzir possíveis erros ou falhas na construção, pois quanto melhor for a qualidade da estrada (padrão de construção), menores serão os custos de manutenção da rede viária. Esse planejamento deverá contemplar a qualidade e a funcionabilidade das estradas no que se refere ao transporte de pessoas e produtos da floresta durante o período planejado de uso. (CORREA *et al* 2006).

Desta maneira segundo Machado, et al (2002) o planejamento pode ser conceituado como uma função administrativa capaz de definir antecipadamente o que deverá ser feito, que técnicas poderão ser empregadas, onde, quando e por quem, dando ênfase a grandes ou pequenos detalhes, de acordo com a exigência do caso.

3.2 LOGÍSTICA

Segundo Ono e Botter (2005), logística é o processo de planejar, implantar e controlar o fluxo eficiente e eficaz de matérias-primas, estoque em processo, produtos acabados e informações relacionadas desde seu ponto de origem até o ponto de consumo, com o propósito de atender aos requisitos dos clientes. Os

autores dividem a logística em dois modelos: o clássico e o moderno. O clássico possui características de pouca variedade de itens, ciclo de vida longo, juros baixos, combustíveis baratos, clientes poucos exigentes, otimização da função, especialização e enfoque espacial; já a logística moderna pode ser caracterizada por grande variedade de itens, ciclo de vida curto, juros altos, combustíveis caros, clientes mais exigentes, otimização do processo, integração e enfoque em tempo.

Para a equipe jornalística da Revista da Madeira (2007), a logística no Brasil está passando por um período de extraordinárias mudanças, tanto em termos de práticas empresariais quanto da eficiência, qualidade e disponibilidade da infra-estrutura de transportes e comunicações, elementos fundamentais para a existência de uma logística moderna.

3.3 REDE VIÁRIA FLORESTAL

Braz (1997) conceitua rede viária florestal como estruturas ou formas fundamentais de caminhos lançados sobre uma área florestal com relação à união ou ligações entre si. Na união das estradas, as redes dos caminhos podem formar quadrados, retângulos, serem paralelos, entre outros. A planificação dos caminhos deve buscar aquela perfeita combinação entre distância ótima, densidade, forma fundamental da rede e classe de estrada, tal que os custos de arraste, de transporte sobre a estrada e de construção desta sejam, sob condições específicas, os menores possíveis. Para complementar, é necessário o desenvolvimento de esquemas teóricos da rede de estradas, que são a idéia inicial de como a rede deverá se estruturar no terreno e servem de base inicial para o pré-projeto

Correa et al (2006) citam que a rede viária de uso florestal é composta de diversas vias de acesso, cuja finalidade é atender as necessidades de transporte de cargas e serviços, como também as atividades de prevenção e combate a incêndios. As áreas de reflorestamento deverão apresentar uma rede viária básica com boas condições de trafegabilidade, de forma a permitir a implantação e manutenção do povoamento. A disposição desse traçado deverá admitir a inserção da rede viária complementar, pela ocasião da colheita de madeira.

Barbosa (2004) comenta que as estradas de uso florestal no Brasil são a base da atividade madeireira, permitindo o tráfego de mão-de-obra e dos meios de produção necessários para implantação, proteção, colheita e transporte de madeira e, ou, produtos florestais. O volume de tráfego pesado e extra-pesado, ocorrendo normalmente em um único sentido, por meio de veículos com capacidade de carga acima de 40 toneladas são características marcantes das estradas florestais.

Para Malinovski *et al* (2004) a rede viária é um tipo de investimento que deve atender de forma abrangente aos aspectos sociais, apresentando exeqüibilidade técnica, definidas através do melhor traçado com o menor custo de implantação e manutenção, com vistas a reduzir os efeitos danosos ao ambiente. Os autores ainda citam que as estradas representam, depois da floresta, o maior investimento num empreendimento florestal além de apresentar longo período de depreciação, sendo composto por diferentes custos em função do padrão escolhido. Os investimentos num projeto de estrada estão distribuídos, em média, na seguinte proporção: investimentos com planejamento 10%, investimentos com projeto de drenagem 20%, cerca de 30% dos investimentos com terraplenagem e 40 % dos investimentos do projeto com pavimentação (INPACEL, 2001).

3.3.1 Planejamento da rede viária

O planejamento das estradas de uso florestal, de acordo com Machado e Malinovski (1987), é elaborado considerando aspectos técnicos, econômicos, ecológicos, silviculturais e jurídicos.

Um bom planejamento normalmente é iniciado no escritório com o auxílio de fotos aéreas e plantas planialtimétricas. É comum fazer-se um planejamento global da rede viária e executá-lo em duas etapas. A primeira, por ocasião da implantação e a segunda, chamada de complementar, por ocasião da colheita (MALINOVSKI; PERDONCINI, 1990).

Para o planejamento da rede viária, Dietz (1983), propõe as seguintes etapas: aquisição de informações; delimitação da área escolhida; determinação dos pontos cardeais; planejamento dos corredores de acesso e faixas de interesse; traçado das linhas de orientação e comparação das variantes da rede viária.

As áreas definidas como de exploração devem ser acessíveis para viabilizar as etapas de manejo florestal, respeitando-se dentro do possível, as distâncias ótimas entre estradas, os raios mínimos, as inclinações máximas, conforme equipamento de transporte, função da estrada, volumes de terra, segurança, entre outros (BRAZ, 1997).

3.3.2 Classificação de estradas de uso florestal

Segundo Nascimento (2005), existe uma vasta gama de classificações de estradas de uso florestal em todo o mundo. No Brasil, não existe uma padronização, sendo que cada empresa possui uma classificação diferente, porém o que muda é o nome dado.

Segundo Machado (1989), tem-se três tipos de sistemas de classificação de rodovias florestais: o padronizado, o flexível e o codificado.

3.3.2.1 Padronizado

O sistema padronizado é limitado a um pequeno e específico número de categorias de estradas de uso florestal. Poderia ser o sistema ideal, para todas as empresas, mas envolveria mudanças radicais. Alguns exemplos deste sistema são:

Classificação proposta pela FAO (1974) citado por Machado (1989); essa classificação se baseia na função da estrada florestal. Possui duas categorias básicas: I) estradas de acesso, as quais seguem o mesmo padrão das estradas públicas da região. Não existe, portanto, uma definição de qual estrada pública, naqueles casos onde existe mais de um padrão; II) estrada de alimentação, as quais visam dar acesso às florestas e diminuir a distância de extração florestal. Geralmente são de baixo padrão construtivo e temporário.

Classificação adotada na Áustria: essa classificação possui três classes de estrada florestal. A primeira, denominada principal, é destinada à conexão e desenvolvimento, devendo possuir um bom padrão de construção e permitir o

tráfego de veículos durante todo o ano. Geralmente possui uma única pista, podendo até ser asfaltada, naqueles casos de alta densidade de tráfego; a segunda, dita secundária é responsável pela divisão da floresta em áreas de exploração e pela conexão dos pátios de estocagem na floresta com as estradas principais. Deve possuir um padrão de construção mais simples, portanto, recomendada para condições climáticas favoráveis: finalmente, a terceira classe, chamada de ramal, é responsável pela conexão da área de corte florestal aos pátios de estocagem na floresta, sendo que a sua pista de rolamento é a própria superfície do terreno, sendo usada apenas para a extração florestal, em condições climáticas favoráveis citado por Machado (1989). Na Tabela 01 é apresentada uma classificação que foi adotada na Áustria e suas especificações técnicas.

TABELA 01: CLASSIFICAÇÃO DE ESTRADA FLORESTAL ADOTADA NO SISTEMA AUSTRÍACO

Especificaçãos Tácnicos	Classe de Estrada Florestal		
Especificações Técnicas	Principal	Secundária	Ramal
Largura da plataforma (m)	5,0 - 5,5	4,5 – 5,0	3,0 – 4,0
Largura da pista de rolamento (m)	3,5 - 4,0	3,0 - 3,5	-
Greide máximo (%)	9	10 – 12	12 – 16
Greide mínimo (%)	2 – 3	2 - 3	3 – 4

Fonte: FAO (1977 apud MACHADO 1989)

A Classificação usada pela Hiwassee Land Company (EUA) citada por MACHADO (1989), diz que a rede rodoviária era classificada em três categorias, diferindo-se entre si pelo padrão de construção, pelo seu traçado geométrico, tipo e intensidade do tráfego. Na Tabela 02 verifica-se a classificação usada nos EUA para estradas de uso florestal.

TABELA 02: CLASSIFICAÇÃO DE ESTRADA FLORESTAL ADOTADA PELA HIWASSEE LAND COMPANY - EUA

Especificações Técnicas	Classe de Estrada Florestal		
	Principal	Secundária	Ramal
Largura da estrada (m)	Acima de 6	3,5 - 4,8	3,0 – 4,0
Greide máximo (%)	8 F ou 1A	12 F ou 2A	18 F ou 12 A
Grau de curvatura máximo	40	55	100
Raio mínimo (m)	30	20	10

Fonte: Walbridge; Bentley (1960 apud MACHADO, 1989)

Onde:

F: sentido favorável (declive para o veículo carregado)

A: sentido adverso (aclive para veículo carregado)

1: aceita-se até 10% numa distância máxima de 150 metros

2: aceita-se até 15% no sentido favorável, numa distância máxima de 150 metros.

3.3.2.2 Flexível

Já o sistema flexível envolve um grande número de classes bem definidas de estradas, devendo ser grande o suficiente para representar todas as condições das diversas empresas florestais. Neste caso, cada empresa adota aquelas classes compatíveis a sua situação específica (MACHADO, 1989).

3.3.2.3 Codificado

O sistema codificado adota uma série de símbolos cada qual representando uma especificação técnica da estrada, bem como sua descrição (MACHADO, 1989). Dessa forma, não há necessidade de uma classificação específica ou várias para cada empresa, ou mesmo uma para todas. Uma empresa pode selecionar, através de símbolos, as características técnicas que desejar e estabelecer a sua própria classificação. Como não existe um número fixo de classes, o sistema é muito flexível, mas não é padronizado.

Ainda o mesmo autor acredita que o sistema padronizado é o que melhor satisfaz, embora seja pouco prático. Na verdade, sempre existirão divergências de opiniões, uma vez que as características técnicas são selecionadas arbitrariamente. Uma boa classificação não permite problemas de terminologia. Deve ser transparente em suas características, fornecer subsídios ao planejamento das rodovias e viabilizar a avaliação das existentes. O maior obstáculo ao se

estabelecer uma classificação de estradas de uso florestal, adotando-se critérios, são as diferenças filosóficas.

3.3.2.4 Outras classificações de estradas florestais

Machado (1989) desenvolveu sua tese de doutorado propondo um sistema de classificação de estradas de uso florestal chamado SIBRACEF, onde foram propostas treze classes essenciais de tipos de estradas de uso florestal. O sistema considera aspectos de segurança, economia, garantia de tráfego e durabilidade, tanto das estradas como dos veículos de transporte.

Quanto aos parâmetros utilizados para classificação, os mesmos também variam muito, existindo empresas que seguem rigoroso critério enquanto outras nem critério possuem. As empresas que mais se preocupam com uma classificação rigorosa e com padrões pré-fixados, são as que utilizam o transporte pesado e extra-pesado.

Uma forma de classificação, proposta por Malinovski e Perdoncini (1990) considera a existência de 4 categorias:

- Estradas primárias: são conhecidas como estradas de ligações entre o centro consumidor e a área de produção. Devem possuir melhor qualidade que as outras da região, possibilitando assim o tráfego pesado durante o ano todo.
- Estradas secundárias: são aquelas de menor qualidade, normalmente implantadas nas áreas de produção e devem dar condição de tráfego para as áreas de produção específicas, até se chegar nas estradas primárias. Muitas vezes, não possibilitam o tráfego pesado normal em todo o ano.
- Estradas terciárias: não possuem revestimento algum e podem ser encontradas somente nas áreas de produção. Por serem de menor qualidade, normalmente são estradas de uso sazonal e muitas vezes se confundem com caminhos de máquinas. A diferença básica é que neste tipo de estradas existe movimentação de terra, enquanto que nos caminhos de máquinas não há.
- Caminhos de máquinas: são aqueles caminhos nos quais somente existe trânsito de máquinas florestais. São abertos dentro da floresta, muitas vezes

somente se rebaixando os tocos. Normalmente, caminho de máquinas é sinônimo de trilhas de extração ou ramal.

3.3.3 Parâmetros de construção de estradas de uso florestal

Correa et al (2006), comentam que o padrão das estradas de uso florestal é o primeiro parâmetro a ser definido num projeto construtivo visto que influencia os custos de construção, de manutenção e de transporte, especialmente através de suas geometrias horizontal e vertical, da qualidade da superfície da pista de rolamento e da largura. De acordo com os mesmos autores, existem empresas que estavam se preocupando em incrementar o transporte pesado ou melhorar seu esquema viário e aproveitando os momentos de reforma de povoamentos para modificar o traçado procurando otimizá-lo.

Segundo Dietz (1983), os parâmetros técnicos são definidos pelas condições e tipo de tráfego, condições do terreno, tipo de solo, clima, regime pluviométrico e padrão de construção. As condições do terreno são caracterizadas pelas propriedades do solo (sobretudo a textura e o teor de umidade que influenciam na fricção interna, coesão, capilaridade, elasticidade, entre outros), a microtopografia (irregularidade da superfície e obstáculos naturais) e a topografia (rede de drenagem natural). Já as condições de tráfego são representadas pela velocidade diretriz (a qual depende do alinhamento horizontal e vertical, da largura da estrada e da superfície de rolamento); densidade de tráfego (ocorrem grandes diferenças entre os volumes de tráfego na implantação das florestas e nas épocas de colheita). A variação dos tipos de solos é dada pelas propriedades do solo e são decisivas em relação a um possível tráfego fora das trilhas de arraste. São fatores importantes a considerar também a microtopografia, que determina a aspereza do solo e obstáculos. Esse fator é de extrema importância para a escolha dos métodos de colheita adequados à estrada. Por outro lado, a topografia determina a viabilidade técnica do delineamento de estradas e trilhas de arraste na floresta. bem como o método de extração da madeira até a estrada.

Nas considerações econômicas os fatores essenciais são a densidade e o padrão da malha rodoviária florestal, padrão do planejamento e da construção das

rodovias florestais, organização da utilização e manutenção. Outros fatores que também influenciam são os custos de capital, de transporte, de manutenção, o volume de madeira a ser transportado, o tipo e a densidade de tráfego, segurança, condições climáticas e ambientais e os padrões rodoviários (MACHADO; MALINOVSKI, 1987).

Diversos autores apresentam suas observações pessoais e práticas construtivas para melhoria da execução e do planejamento do sistema viário. Entre estes, Kretschek (1996), apresenta recomendações, sobretudo para as regiões montanhosas, entre as quais se tem o conhecimento da base física, constando de localização da área em relação à rede pública viária existente, em relação aos recursos materiais e humanos e em relação ao destino da madeira; limites da área, conhecendo tudo que contém na área e adjacências; redes viárias internas e externas de todos os tipos; cobertura vegetal com respectivas potencialidades; hidrografia, incluindo banhados e nascentes; relevo, mostrando o direcionamento dos vales, linhas de cume, faces ensolaradas; geologia para ver a estabilidade do terreno, necessidades de revestimento e controle de erosão.

Segundo Braz (1997), outro ponto de extrema importância também se refere à avaliação do volume de madeira a ser transportado, pois poderá influenciar em aumentos de custo de construção do caminho por m³ de madeira explorável. Neste ponto os inventários, diagnóstico e prospectivo, desempenham importante papel. Área com volume utilizável baixo requer alternativa especial de lançamento de caminhos. Para maiores volumes pode-se lançar uma quantidade maior de estradas.

3.3.3.1 Relevo do Terreno

A topografia da região delimita o tipo de equipamento para extração florestal, o qual por sua vez necessita de um tipo adequado de rede viária florestal. Em terrenos planos recomenda-se uma distância entre estradas mais ou menos regular, de forma quadrada ou retangular, sendo que a forma retangular tem-se comprovado ser a mais adequada. No entanto, deve-se tomar cuidado com depressões úmidas e pantanosas (MALINOVSKI e PERDONCINI, 1990).

Para Kretschek (1996) o relevo do terreno é um dos fatores mais importantes no desenvolvimento do projeto do alinhamento vertical da via e o efeito da topografia é mais pronunciado no alinhamento vertical do que no alinhamento horizontal da via. O autor recomenda que as estradas principais sejam feitas, sempre que possível, nas lombas próximas das linhas de cume por facilidade de drenagem, maior exposição à secagem pelo vento, menos passagens em cursos d'água, serem mais planas, mais retas, estarem em solos mais mineralizados e, portanto, mais firmes.

Existem diversas classificações de relevo do terreno, como da EMBRAPA e da norma americana para construção de estradas AASHTO, por exemplo. A EMBRAPA sugere a classificação do relevo em 6 categorias baseadas em classes de declividade, conforme a Tabela 03.

TABELA 03: CLASSES DE DECLIVIDADE E TIPOS DE RELEVO

TABLE 03. CLASSES DE DECLIVIDADE E 111 OS DE NELEVO		
Declividade (%)	Tipo de Relevo	
0 – 3	Plano	
3 – 8	Suave ondulado	
8 – 20	Ondulado	
20 – 45	Forte ondulado	
45 – 75	Montanhoso	
> 75	Escarpado	

Fonte: EMBRAPA (apud RODRIGUES, 2004) - Sistema Brasileiro de Classificação de solos.

A AASHTO (2010) sugere a classificação do relevo em três categorias baseadas principalmente no critério visibilidade, conforme:

- Terreno Plano: Distâncias de visibilidade em geral são longas e podem ser impostas sem dificuldades construtivas ou custos relevantes;
- Terreno ondulado: Variações predominantes do relevo alteram-se naturalmente para cima e para baixo do greide da via e apenas eventuais declividades íngremes oferecem alguma restrição aos alinhamentos horizontal e vertical da via;
- Terreno montanhoso: Alterações longitudinais e transversais do relevo em relação à via são abruptas, com necessidade em alguns casos de escavações laterais para obtenção de visibilidade.

3.3.3.2 Irregularidade (IRI)

Segundo o World Bank (1994) e citado por Leite (2002), a irregularidade é um item bastante importante para o cálculo da velocidade e dos custos de operação; a mesma é definida como os desvios da superfície em relação a uma superfície plana, que afetam a dinâmica do veículo, a qualidade do deslocamento, as cargas dinâmicas e a própria drenagem da via. Seu valor é obtido observandose o número de ondulações por quilômetro, ou usando-se instrumentos de precisão que registram os deslocamentos na vertical (socos) que ocorrem em um veículo como demonstrado na Tabela 04.

TABELA 04: AVALIAÇÃO QUALITATIVA DA IRREGULARIDADE E VALOR DO IRI

Avaliação qualitativo do irregularidado	Irregularidade – IRI (m/km)		
Avaliação qualitativa da irregularidade	Via pavimentada	Via não pavimentada	
Suave	2	4	
Razoavelmente suave	4	8	
Medianamente suave	6	12	
Irregular	8	15	
Muito irregular	10	20	

Fonte: LEITE, 2002 (apud WORLD BANK HDM III)

3.4 TRANSPORTE

O transporte de madeira é composto por duas etapas básicas. A primeira, o transporte primário, diz respeito ao deslocamento da madeira das florestas até uma área de fácil acesso aos caminhões (que devido ao seu peso, exigem estradas com boas condições para tráfego). Já a segunda é chamada de transporte principal e corresponde ao transporte da madeira dessas áreas de fácil acesso até as fábricas de transformação (SEIXAS e CAMILO, 2009).

Segundo Barbosa (2004), o transporte de madeira no Brasil é realizado, principalmente, através do modo rodoviário, sendo responsável, na maior parte das vezes, pela maior parcela dos custos da madeira posto fábrica. Trata-se de um setor que atualmente sofre pressão de aumento de custos em virtude da instalação

de postos de pedágios nas rodovias, fiscalização mais rigorosa com relação à "Lei da Balança" e reajustes dos preços de combustível.

3.4.1 Classificação de veículos no transporte rodoviário

Segundo Barbosa (2004), os veículos de cargas são classificados em:

- a) Leves: veículo simples, com capacidade de carga de até 10 toneladas;
- b) Médios: veículo simples, com capacidade de carga entre 10 e 20 toneladas:
- c) Semi-pesados: veículo simples, articulado ou conjugado, com capacidade de carga entre 20 e 30 toneladas;
- d) Pesados: veículo articulado ou conjugado, com capacidade de carga entre 30 e 40 toneladas; e
- e) Extra-pesados: veículos do tipo rodotrem, treminhão, bitrem e tritrem, com capacidade de carga acima de 40 toneladas.

No Brasil, o setor de transporte é responsável por quase 50% do consumo de derivados do petróleo, sendo o óleo diesel o principal combustível utilizado no transporte de cargas e passageiros. Não se espera para os próximos 20 anos alternativas econômicas que, em larga escala, substituam este combustível no setor de transporte. Assim, aumentar a eficiência e a racionalização de seu uso é, acima de tudo, ação estratégica (GUIMARÃES, 2004).

3.4.2 Legislação aplicada ao transporte de madeira

Segundo o Código de Trânsito Brasileiro, o pavimento das estradas e sua base possuem um limite de suportabilidade e o contínuo esforço de resistência à rolagem dos pneus desgasta a capacidade de resistência do pavimento. É por isso que se formam as deformações e o enrugamento do asfalto (camaleões), as fissuras (rachaduras) e as rupturas (buracos). Estradas danificadas provocam acidentes e mortes, prejudicam os veículos e retardam as viagens. Para que um

veículo esteja de acordo com a legislação, é preciso que ele respeite duas limitações ao mesmo tempo: o limite legal e a restrição técnica (VIANA, 2002).

Ainda segundo Viana (2002), o limite legal é o regulamentado pelas autoridades de trânsito e estabelece o valor máximo de peso bruto por eixo ou para um conjunto de eixos, de acordo com o número de pneus desses eixos e do sistema de suspensão. Esse valor deve ainda ser limitado pelo peso máximo que o fabricante do veículo estabeleceu para o eixo ou seu conjunto, de acordo com as características da suspensão, como o tipo de eixo utilizado, o material empregado na sua construção e os pneus que equipam esse eixo. Portanto, deve-se comparar o limite legal com o limite técnico e utilizar-se o menor deles, para que não sejam ultrapassadas quaisquer dessas duas limitações.

O transporte florestal deve se sujeitar ao Código Brasileiro de Trânsito - Lei da Balança, e composições especiais para o transporte de alta tonelagem, como treminhão e rodotrem, devem ter licenças especiais para o tráfego, renovável periodicamente. A lei da balança é definida como aquela que limita a carga máxima por eixo a ser transportada e fixam as dimensões autorizadas para o transporte de carga rodoviária, apresentando os pesos máximos permitidos por tipo de composição (MALINOVSKI; PERDONCINI, 1990). Ela tem como objetivo a preservação das condições das estradas, pontes e viadutos.

3.4.3. Peso por eixo

A portaria n° 86 de 20 de dezembro de 2006, emitida pelo DENATRAN, homologa os veículos de transporte de carga, com os seus respectivos limites de comprimento, peso bruto total – PBT e peso bruto total combinado – PBTC, peso por eixo e comprimento máximo das composições (Tabelas 05 e 06).

No caso de eixo isolado com quatro pneus, o peso máximo permitido é de 10 t, enquanto para eixo isolado com dois pneus, direcional ou não, o peso máximo permitido é de 6 t. Um eixo é considerado isolado quando situa-se a mais de 2,40 metros do eixo mais próximo. Já para conjuntos de dois eixos de quatro pneus cada, estes podem suportar 17 t, se forem em tandem, e 15 t se não forem em

tandem. São considerados eixos em tandem dois ou mais eixos que constituam um conjunto integral de suspensão, podendo um deles ser ou não motriz.

Um conjunto em tandem de três eixos de quatro pneus cada tem capacidade para 25,5 t. Nos conjuntos em tandem de dois eixos ou três eixos de quatro pneus, a diferença de pesos brutos entre os eixos mais próximos não pode exceder a 1.700 kg. Tanto os limites de peso por eixo quanto os de peso bruto só prevalecem se todos os pneus estiverem em rodas do mesmo diâmetro.

Os pesos brutos totais das composições de transporte de carga não podem ultrapassar a capacidade máxima de tração (CMT). Um critério utilizado pelos fabricantes para estabelecer a CMT é a adoção da relação de 6 hp/t. Dessa forma, um cavalo-mecânico exige no mínimo 270 hp para tracionar 45 toneladas.

Viana (2002), complementa que o peso bruto total combinado (PBTC) de um veículo é a resultante do peso do chassi do veículo vazio, em ordem de marcha, somado com o peso da carroçaria que equipa esse veículo e com o peso da carga que está sobre a carroçaria. Para as unidades de tração (cavalosmecânicos) onde o semi-reboque ou reboque exerce uma força vertical significativa sobre o dispositivo de acoplamento (quinta roda ou outro), tal força deve ser incluída no peso total máximo indicado ou no peso total máximo autorizado.

TABELA 05: COMPOSIÇÕES HOMOLOGADAS PARA O TRANSPORTE DE CARGA.

	COMPOSIÇÕI	ES HOMOLOGA	ADAS P	ARA	TRAN	ISPOF	RTE DE	CARGA	
		11.01				E PBT	- 0.00		Compri
3	COMPOSIÇÕES	Peso máximo por eixo ou conjunto de eixos (t)	Inferior ou igual a 14,0	inferior a 16,0	Comprir superior ou igual a 16,0	inferior a 17,5	(metros) superior ou igual a 17,5	superior a 19,8 superior ou igual a 25,0	mento máximo (m)
0		6+10 = 16	16		n 1000 a				er A
Caminhão	000	6+17 = 23	23						14,0
రొ	00 00	12+17 = 29	29						is o
		6+10+10± 26		26	26				
	0000	6+10+17= 33		33	33				10
		6+10+10+10 ± 36		36	36				E a
	0 000	6+10+25,5 = 41,5		41,5	41,5				
Caminhão + semi-reboque		6+10+10+17=43		43	43				
emi-re		6+10+10+10+10= 46		45	46				18,6
130 + s	6 60 0	6+17+10±33		33	33				16,0
Camin	(6+17+17=40		40	40				
		6+17+10+10± 43		43	43				
	00000	6+17+25,5 = 48,5		45	48,5				
	00000	6+17+10+17 = 50		45	50				
	00000	6+17+10+10+10=53		45	53				l:
		6+10+10+10 = 36				36	36		19,8
		6+10+10+17 = 43				43	43		
enb	0 00 0 0	6+17+10+10 = 43				43	43		
caminhão + reboque	00000	12+17+10+10=49			# S	45	49		
ninhão	0 00 00	6+10+17+17 = 50				45	50		10,0
Cal	0000000	6+17+10+17= 50				45	50		
		12+17+10+17= 56				45	56		
		6+17+17+17= 57				45	57		2
enb		6+10+10+10+10=46				45	46		c.
ni-rebo ue		6+17+10+10+10=53	. 0			45	53		i E
Caminhão + se mi-reboque + reboque		6+10+17+10+10=53			8	45	53		19,8
ninhão +		6+10+10+17+10=53				45	53		
ষ্ট		6+10+10+10+17=53				45	53); Y
		6+10+10+10=36				36	36		5
•		6+17+10+10=43				43	43		
Caminhão + 2 sem+reboque		6+10+17+10=43				43	43		
Semi		6+10+10+17=43			1 2	43	43		10.0
30+2		6+17+10+17=50				45	50		19,8
aminh	00000	6+17+17+10=50			i 3	45	50		ē
٥		6+10+17+17=50				45	50		
	0 00 00 00	6+17+17+17=57				45	57		

Fonte: Portaria n° 86, de 20 de dezembro de 2006 homologadas pelo CONTRAN

TABELA 06: COMPOSIÇÕES QUE NECESSITAM DE AUTORIZAÇÃO ESPECIAL DE TRÂNSITO – AET

	COMPOSIÇÕES QUE	NECESSITAM D	E AUTO	RIZA	ÇÃO ES	PECIA	L DE T	RÂNSI	TO - AE	T
enb		6+10+10+10+10=46						46		
Caminhão + semi-ne boque + reboque		6+17+10+10+10=53						53		
		6+10+17+10+10=53						53		30,0
ninh3c +		6+10+10+17+10=53						53		
8		6+10+10+10+17=53						53		
		6+10+10+10=36						36		
9		6+17+10+10=43						43		
poder.		6+10+17+10=43						43		
Caminhão + 2 semireboque		6+10+10+17=43						43		30,0
130 + 2	000 000	6+17+10+17=50						50		
Camin	0 00 00 0	6+17+17+10=50						50		
	0 00 00	6+10+17+17=50						50		
	0000000	6+17+17+17=57						57		
enbo	0 00 000 00	6+17+25,5+17 = 65,5							65,5	30,0
Caminhão 2 semi-reboque	0 00 00 000	6+17+17+25,5= 65,5							65,5	
+ 2s	0 00 000 000	6+17+25,5+25,5= 74							74	
enbo enbo		6+17+17+10+10= 60							60	
Caminhão semi-reboque + reboque		6+17+17+10+17= 67							67	30,0
8 +	6 00 00 00 00	6+17+17+17+17=74							74	
Caminhão 2 reboque		6+17+10+10+10+10= 63							63	20.0
Caminhão + 2 reboque		6+17+10+17+10+10=70							70	30,0
Caminhão +3 semi-reboque	00000000	8+17+17+17+17=74							74	30,0

Fonte: Portaria nº 86, de 20 de dezembro de 2006 homologadas pelo CONTRAN

3.4.4 Autorização Especial de Trânsito - AET

De acordo com a Resolução N° 75 de 19 de novembro de 1998, o Conselho Nacional de Trânsito – CONTRAN, CVCs que ultrapassam 57 t, ou comprimento total acima de 19,80 m somente poderão circular com Autorização Especial de Trânsito – AET, sendo esta somente concedida pelo Órgão Executivo Rodoviário da União, dos Estados, dos Municípios ou do Distrito Federal, mediante atendimento aos seguintes requisitos:

I – para a Composição Veicular de Carga (CVC):

- a) Peso Bruto Total Combinado PBTC igual ou inferior a 74 toneladas;
- b) Comprimento superior a 19,80 m e no máximo de 30 metros, quando o PBTC for inferior ou igual a 57 t.
- c) Comprimento mínimo de 25 m e máximo de 30 m, quando o PBTC for superior a 57 t.
- d) Limites legais por eixo fixados pelo CONTRAN;
- e) Compatibilidade da Capacidade Máxima de Tração CMT da unidade tratora, determinada pelo fabricante, com o PBTC;
- f) Estar equipada com sistemas de freios conjugados entre si e com a unidade tratora, atendendo o dispositivo da Resolução n° 777/93 – CONTRAN;
- g) O acoplamento dos veículos rebocados deverá ser do tipo automático conforme NBR 11410/11411 e estar reforçado com correntes ou cabos de aço de segurança;
- h) O acoplamento dos veículos articulados deve ser do tipo pino-rei e quinta roda e obedecer o disposto na NBR NM/ ISSO 337
- i) Possuir sinalização especial na forma do ANEXO II da Portaria 86 e estar provida de lanternas laterais colocadas em intervalos regulares de no máximo 3 m entre si, que permitem a sinalização do comprimento total do conjunto.

II – para as condições de tráfego das vias públicas a serem utilizadas

- § 1° A unidade tratora dessas composições deverá ser dotada de tração dupla, ser capaz de vencer aclives de 6%, com coeficiente de atrito pneu/solo de 0,45, uma resistência ao rolamento de 11 kgf/t e um rendimento de sua transmissão de 90%.
- § 3° A Autorização Especial de Trânsito AET, fornecida pelo Órgão Executivo Rodoviário da União, dos Estados, dos Municípios e do Distrito Federal, terá o percurso estabelecido e aprovado pelo órgão com circunscrição sobre a via.

3.4.5 Normas legais aplicadas ao transporte florestal rodoviário

A resolução N° 246 do CONTRAN, de 27 de julho de 2007, altera a resolução de N° 196 de 25 de julho de 2006 e fixa requisitos técnicos de segurança para o transporte de madeira bruta por veículo rodoviário de carga.

Esta norma conceitua tora como sendo a madeira bruta com comprimento maior que 2,50 metros, e dispõe que estas devem ser transportadas no sentido longitudinal do veículo, com disposição vertical ou piramidal (triangular).

As toras devem estar obrigatoriamente contidas, para o transporte vertical, com painéis dianteiro e traseiro da carroceria do veículo, exceto para os veículos extensíveis com toras acima de 8 m de comprimento, para os quais não são necessários painéis traseiros. As toras também devem estar apoiadas em escoras laterais metálicas, perpendicularmente ao plano do assoalho da carroceria do veículo (fueiros) sendo necessário 2 (duas) escoras de cada lado, no mínimo, para cada tora ou pacote de toras. Ainda devem estar amarradas com cabo de aço ou cordas de poliéster, com capacidade mínima de ruptura à tração de 3.000 kgf, tencionadas por sistema pneumático auto-ajustável ou catracas fixadas na carroceria do veículo.

Para o transporte longitudinal de toras de espécies nativas as normas estão dispostas no § 2° do Art. 3°.

A norma também regulamenta o direito de circulação, até o sucateamento, aos veículos fabricados e licenciados para o transporte de toras ou de madeira bruta, até a data de publicação da Resolução do CONTRAN, desde que seus proprietários tenham cumprido todos os requisitos para a sua regularização, mediante comprovação no Certificado de Registro do Veículo – CRV e Certificado de Registro e Licenciamento de Veículo – CRLV.

3.4.6 Tipos de caminhões utilizados no transporte de madeira

Os tipos de veículos variam de acordo com o tamanho e a capacidade de carga, sendo sua escolha de acordo com as condições locais, distância de transporte e volume de madeira a ser transportado (MACHADO et al, 2000).

Segundo Machado (1984), os tipos de veículos rodoviários utilizados no Brasil eram: caminhão convencional (4x2, 4x4, 6x2, 6x4); caminhão e reboque "Romeu e Julieta" (caminhão 6x4); caminhão e semi-reboque com cambão telescópico (caminhão 6x4); cavalo mecânico, semi-reboque e reboque "Rodotrem" (cavalo mecânico 6x2 ou 6x4). Malinovski e Perdoncini (1990) comentam que a linha mais encontrada no transporte florestal eram a dos traçados (4x4 e 6x4), porém ocorrendo a utilização dos convencionais 4x2 e 6x2, principalmente em regiões planas ou caminhões de terceiros que transportam madeira sazonalmente. Outro fator que determina o tipo de caminhão é a qualidade das estradas.

Machado *et al* (2000) comentam que os diferentes tipos de caminhões podem ser classificados de acordo com a composição veicular, descrita assim:

- Simples (caminhão): constituído de uma unidade tratora e transportadora;
- Articulado (carreta): constituído de uma unidade tratora e um semireboque;
- Conjugado (biminhão): constituído de um caminhão simples e um reboque;
- Bitrem: combinação de um cavalo-mecânico e dois semi-reboques;
- Tritrem: combinação de um cavalo-mecânico e três semi-reboques;
- Rodotrem: constituído de um veículo articulado e um semi-reboque;
- Treminhão: constituído de um caminhão simples e dois semi-reboques.

3.4.7 Desempenho das composições veiculares de carga

Segundo Machado *et al* (2000), para que haja movimento é necessário que a força do motor seja transmitida para as rodas, e destas para o solo, e que vençam diversas forças contrárias, como resistência aerodinâmica, de aclive, de rolamento e inercial.

3.4.7.1 Torque na roda (Tr)

É a força responsável pela movimentação dos veículos. O motor produz um torque que se multiplica no sistema de transmissão pelas relações de redução selecionadas na caixa de mudanças e no diferencial, e considerando o rendimento da transmissão, tem-se na roda o seguinte:

$$Tr = Tm x i_c x i_d x n$$
 (1)

Onde:

Tr = Torque na roda (kgfm);

Tm = Torque máximo (kgfm);

i_c = Relação de redução da caixa de câmbio

i_d = Relação de redução no diferencial

n = rendimento da transmissão = 0,9

3.4.7.2 Raio dinâmico (Rd)

Os pneus deformam-se quando o veículo está carregado e em movimento, fazendo com que a distância do centro da roda ao solo seja menor do que a do pneu fora do veículo (raio teórico). O raio dinâmico depende de uma série de fatores como: tipo de pneu, tipo de superfície da pista de rolamento, dimensões dos pneus, velocidade, carga e calibragem.

Como exemplo pode-se citar que para um pneu 11.00X22" diagonal, o raio dinâmico pode ser de 0,547.

3.4.7.3 Força disponível na roda (FR)

É a força que o veículo dispõe para utilização em cada marcha, à qual se associa um rendimento, resultado das perdas por atrito, dado pela seguinte relação:

$$FR = \underline{Tm \times ic \times id \times k}$$
 (2)

Rd

Onde:

FR = Força disponível na roda do veículo (kgf)

Tm = Torque máximo (kgfm);

i_c = Relação de redução da caixa de câmbio

i_d = Relação de redução no diferencial

k = rendimento (0.9)

Rd = raio dinâmico do pneu no eixo de tração (m)

3.4.7.4 Força de aderência (Fad)

É a força que o veículo pode utilizar em decorrência do peso que incide sobre o(s) eixo(s) de tração e do coeficiente de atrito da superfície de rolamento da rodovia, determinado por:

$$Fad = P x y \tag{3}$$

Onde:

Fad = força de aderência (kgf)

P = peso incidente sobre o(s) eixo(s) de tração (kg)

y = coeficiente de atrito (pneu x solo)

TABELA 07: COEFICIENTE DE ATRITO ESTÁTICO

Pavimento	Coeficiente de atrito estático
Pavimento rígido/flexível	0,6 - 0,7
Revest. primário estabilizado	0,5 - 0,6
Sem revestimento (Argiloso seco)	0,55
Sem revestimento (Argiloso úmido)	0,45
Sem revestimento (Arenoso úmido)	0,4

Fonte: Machado et al (2000)

Quando FR é maior que Fad, ocorre a patinação, assim deve-se utilizar o valor de Fad para o cálculo de capacidade de subida do veículo. Todavia se a FR for menor que a Fad, deve-se utilizar a FR.

3.4.7.5 Forças restritivas

Para um veículo se deslocar e manter-se em movimento, é necessário que ele vença uma série de forças que a ele se opõe, dentre as quais: resistência ao rolamento, resistência de rampa, e resistência aerodinâmica.

3.4.7.6 Resistência ao rolamento (Rr)

A resistência ao rolamento pode ser conceituada como a força necessária para superar os efeitos da oposição ao movimento entre os pneus e a superfície da pista de rolamento, dada a penetração dos pneus no solo, causando deformação no solo e, ou, dos pneus quando da operação do veículo.

A Rr pode ser calculada por:

$$Rr = PBT \text{ ou } PTBC \text{ } x RRs$$
 (4)

Onde:

Rr = Resistência ao rolamento (kg)

PBT ou PBTC = Peso bruto total ou peso bruto total combinado (t)

RRs = Coeficiente de resistência ao rolamento (kg/t)

TABELA 08: VALORES DE COEFICIENTE DE RESISTÊNCIA AO ROLAMENTO (RRS)

Pavimento	Condição do Pavimento	RRs (kg/t)
	Liso	8
Revestimento	Médio	9
	Rugoso	10
	Liso	10
Flexível	Médio	13
	Rugoso	15
	Devidamente	15
	compactado	15
Estabilizado	Moderadamente	18
	compactado	10
granulometricamente	Fracamente	20
	compactado	20
	Sem compactação	25 – 90
	Argiloso seco	25 – 45
Com rovectiments	Argiloso úmido	40 – 80
Sem revestimento	Arenoso úmido	75
	Arenoso seco	100 -120

Fonte: McNally 1975.

3.4.7.7 Resistência de rampa (Ri)

A resistência a rampa é a força contrária ao movimento ascendente, dada a ação da gravidade que precisa ser vencida à medida que o veículo percorre uma rampa, e pode ser calculada por:

$$Ri = (PBT x i) ou (PBTC x i)/100$$
 (5)

Onde:

Ri = resistência de rampa (kg)

PBT ou PBTC = Peso bruto total ou peso bruto total combinado (kg)

i = greide (%)

Como referência, segundo informações técnicas do fabricante Mercedes Benz (2010), para um caminhão com 428 CV de potência máxima de 428 CV a 1900 rpm, torque máximo de 214 mkgf a 1100 rpm, com caixa de mudanças MB G 240 – 16, pneus 11.00 R 22 PR 16 e redução i=6,000:1, a capacidade máxima de subida de rampa (partida em rampa) com 43.000 kg é de 45%; com 63.000 kg é de 29% e com 123.000 kg é de 14%.

3.4.7.8 Resistência aerodinâmica (Fa)

A resistência aerodinâmica é a força que o ar oferece ao avanço do veículo, devido aos ventos frontais e laterais que se opõe ao movimento, e é dado pela seguinte equação:

Fa =
$$0,005 \times \text{Ca} \times \text{p} \times \text{Af} \times (\text{V} \pm \text{Vv})^2$$
 (6)

Onde:

Fa = Resistência aerodinâmica (kg)

Ca = Coeficiente aerodinâmico

Af = Área frontal projetada do veículo (m2)

p = densidade do ar

(V ± Vv) = Velocidade do veículo com relação ao vento (km/h)

3.4.7.9 Eficiência energética

Para Silveira e Sierra (2010), há no mercado diversos modelos de tratores e caminhões e no momento da compra, a escolha do proprietário se baseia na potência, no conforto, na facilidade de manobra e na manutenção, além do preço. O conhecimento da eficiência energética do equipamento poderia ser mais um item a ser considerado em sua seleção.

ASABE (2005) estabeleceu uma estimativa do consumo médio dos tratores acionados por motor diesel, de acordo com a seguinte equação:

$$Qavg = 0.223 * Ppto$$
 (7)

Onde:

Qavg = consumo médio (L/h)

Ppto = máxima potência do motor na tomada de (kW)

3.4.8 Ciclo de transporte de madeira

Segundo Lacowicz *et al* (2002), em uma empresa do sul do Brasil, de 17 elementos do ciclo operacional analisados no transporte de madeira, 6 representaram 90 % do tempo total do ciclo de transporte, sendo eles: o tempo de viagem vazia, carregada, carga, descarga e filas para carga e descarga.

Para Leite (1992), a distância é um dos fatores que mais afetam o custo de transporte e este varia de acordo com a localização da fábrica em relação às áreas de produção da madeira, independente do sistema de transporte. Silversides (1978) expõe que a distância é um dos principais fatores que governa os custos do transporte, pois determina o volume de madeira a ser transportado por turno ou dia de trabalho, em cada tipo de composição veicular, e quanto mais extenso for o trajeto, maior será o custo unitário por volume de madeira transportada.

Marques (1994) e Isard (1975) citam que o custo de transporte pode ser altamente afetado pelo tempo de carga e descarga. Os tempos de carga e descarga são definidos em uma das suas obras como "custo terminal", tornando-se altamente expressivos quando o transporte é efetuado em pequenas distâncias, com maior número de operações de carga e descarga, e menos expressivos em grandes distâncias.

Segundo Malinovski e Fenner (1986), o tempo de espera deve ser o mínimo possível e, para tanto, deve-se optar por um sistema de carga e descarga que seja o mais rápido e seguro possível e de baixo custo, pois a fila de transporte

não está só relacionada com o número de caminhões, mas também com o rendimento ou produtividade dos carregadores.

3.5. EXTRAÇÃO DE MADEIRA

Segundo Seixas e Camilo (2008), a operação de extração refere-se à movimentação da madeira desde o local de corte até o carreador, a estrada ou um pátio intermediário. Existem vários sinônimos desta operação, muitas vezes dependendo do modo como ela é realizada ou do tipo de equipamento utilizado, podendo ser citados os mais comuns como baldeio, arraste, encoste e transporte primário.

3.5.1. Baldeio de madeira

Ainda segundo Seixas e Camilo (2008) a madeira no baldeio é transportada apoiada sobre uma plataforma, como um "trailer" ou um trator autocarregável (forwarder ou timber hauler) ou ainda sobre um caminhão com plataforma rígida. Originalmente fabricados no Canadá e aprimorados na Escandinávia, os tratores florestais auto-carregáveis são, em sua maioria, máquinas articuladas com suspensão da plataforma embaixo do chassi traseiro e capacidade de carga variando de 5.000 a 20.000 kg. A razão entre o peso movimentado e a potência do veículo oscila entre 140 e 280 kg/hp, com a maioria situando-se na faixa de 160 a 180 kg/hp. A velocidade não é uma característica essencial desse tipo de trator, com a maior parte do tempo operacional sendo gasto com carga e descarga, destacando-se muito mais em função da capacidade de superar as condições adversas encontradas no campo.

Essas máquinas possuem uma caixa de carga e um carregador hidráulico, que pode ser montado tanto sobre o chassi de carga como no dianteiro, ou em uma escavadeira hidráulica. O carregador conta com uma capacidade de carga variando de 300 a 4.000 kg por ciclo e alcance de 3 a 12 metros. Podem trabalhar

em terrenos acidentados até uma inclinação máxima ao redor de 30%, ou de 60% desde que se movimente no sentido do declive. Trata-se de um equipamento com custo de aquisição elevado, que exige florestas de boa produtividade e operador qualificado, adaptado de Seixas (1987) e Souza et al(1988).

3.6 CUSTOS

Segundo Marques *et al* (2000), através da estimativa do custo de produção, conceituado como a soma dos valores de todos os recursos (insumos) e operações (serviços) utilizados no processo produtivo de certa atividade em certo prazo, é possível identificar os resultados econômicos. No curto prazo, os recursos são classificados em fixos e variáveis e as despesas deles decorrentes são os custos fixos e custos variáveis.

Para Zatta et al (2002), conhecer como os custos variam pela identificação dos respectivos direcionadores e separar custos fixos e variáveis, costuma ser fundamental para a tomada de boas decisões administrativas. Muitas funções gerenciais, como planejamento e controle, dependem do conhecimento de como os custos se comportarão.

Marques et al (2000) citam que variabilidade ou não dos custos é determinada num horizonte de tempo, causada por ação gerencial ou estimativas. Os custos freqüentemente esbarram em condições ambientais, tecnológicas e de natureza econômica que alteram o seu comportamento. Nas estratégias de gerenciamento, o custo é muito comumente direcionado por fatores que se interrelacionam de forma complexa entre as determinantes de variabilidade num espaço relevante de tempo. Os direcionadores de custos devem apresentar uma relação economicamente viável com a variável que leva a determinação de uma medida apropriada da execução da atividade

Ainda segundo Marques et al (2000) os custos fixos são aqueles correspondentes aos recursos que têm duração superior ao curto prazo e, portanto, sua renovação só é verificada a longo prazo. São as despesas do produtor com terras, benfeitorias, máquinas, equipamentos, impostos e taxas fixas, máquinas de trabalho, etc. Os custos variáveis têm duração inferior ou igual ao curto prazo,

sendo, portanto, sua recomposição feita a cada ciclo do processo produtivo. Referem-se aos gastos do produtor com insumos e serviços de modo geral, como sementes, defensivos, fertilizantes, serviços prestados por mão-de-obra, técnica e administrativa, aluguel de máquinas, equipamentos e animais de trabalho, e despesas gerais (combustíveis, lubrificantes, energia elétrica, gastos com reparos e conservação, etc.).

Segundo Hansen (2001), direcionadores de atividades explicam as mudanças nos custos de atividades ao mensurar as mudanças na execução da atividade (consumo). Se o custo é fixo ou variável, em relação a um determinado direcionador depende do horizonte de tempo. A teoria econômica advoga que no longo prazo todos os custos são variáveis e no curto prazo ao menos um componente é fixo. Ainda para o mesmo autor os termos custo fixo e custo variável não existem em um vácuo, eles só têm algum significado quando relacionados com alguma medida de produção ou atividade.

Na análise econômica do custo de produção considera-se como custo alternativo (ou de oportunidade) de um recurso produtivo o quanto o capital nele empregado estaria rendendo no seu melhor uso alternativo. É a retribuição normal ao capital utilizado na atividade. Só haverá lucro econômico se a atividade produtiva proporcionar retorno que supere o custo alternativo.

Para análise de rentabilidade, considera-se como receita o resultado da atividade em valores monetários, ou seja, o preço de cada unidade vezes a quantidade vendida (produzida). A análise da rentabilidade consiste, em geral, na comparação da receita com o custo de produção, o que determina se os lucros obtidos são: lucro supernormal ou econômico: é uma situação em que a atividade está obtendo retornos maiores que as melhores alternativas possíveis de emprego do capital, indicando que a empresa pode se expandir no médio ou longo prazo; lucro normal: sugere que a atividade está obtendo retornos iguais aos que seriam obtidos nas melhores alternativas possíveis de emprego dos recursos, significando estabilidade, em que o nível de produção a curto e longo prazos se mantém constante; e quando o preço não cobre os custos totais médios: neste caso, é preciso avaliar até que nível o preço cobre o custo fixo médio, indicando a intensidade de descapitalização da atividade.

Segundo Quadros (2010), em uma análise econômica de empresas prestadoras de serviço florestal em duas regiões do estado de Santa Catarina, as

empresas de serviço de colheita de madeira, à medida que as atividades são mais mecanizadas diminui a proporção de custo fixo em relação ao custo total, pois apesar de haver um aumento dos custos de oportunidade e de depreciação das máquinas e equipamentos, que são fixos, há um aumento em maior proporção dos demais custos de máquinas e equipamentos que são variáveis, como combustíveis, reparos e manutenção, assim como, um aumento das despesas governamentais. Colabora com esta constatação o fato de haver uma diminuição do custo de mão-de-obra direta, que são fixos, à medida que a atividade é mais mecanizada. Ainda neste estudo as empresas de transporte florestal tiveram as menores proporções de custos fixos em relação aos variáveis, fato que ocorre devido ao alto índice de utilização de máquinas e implementos e aos elevados valores de despesas governamentais. Há uma acentuada diminuição na participação dos custos fixos em relação ao custo total à medida que aumenta o tamanho das empresas, pois os custos fixos são mais elevados nas microempresas devido a elevada participação dos custos de mão-de-obra direta. Por outro lado, os impostos, considerados custos variáveis, aumentam à medida que aumenta a receita bruta que é maior, quanto maior o tamanho da empresa.

Souza (2004) comenta que o custo da madeira no pátio das fábricas é composto basicamente pelo valor da madeira em pé e pelos custos de construção e manutenção de estradas, colheita e transporte de madeira. Para dois povoamentos com as mesmas características (idade, sítio, tratos culturais, topografia, entre outros), o valor médio da madeira em pé, os custos de estradas e de colheita de madeira são similares, contudo, o custo de transporte pode variar significativamente, pois depende da distância entre o povoamento e a fábrica.

Para uma mesma distância de transporte, quanto menor for o valor do produto florestal, maior será a importância do transporte no custo da madeira colocada no pátio das fábricas e, conseqüentemente, no custo do produto final. Malinovski e Malinovski (1998) comentam que a colheita e o transporte de madeira representam, em média, de 60% a 70% dos custos da madeira colocada no pátio das fábricas.

O custo total do transporte rodoviário florestal se traduz na soma do custo operacional dos veículos e do custo da infra-estrutura das estradas de uso florestal (construção e manutenção). A velocidade média dos veículos de transporte florestal, o consumo de combustível, o gasto de pneus e a manutenção dos

veículos, podem ser influenciados pelo padrão de qualidade das estradas, o que contribui para o aumento dos custos do transporte florestal (MACHADO, 2000).

Segundo Machado *et al* (2000), os fatores que influenciam os custos de transporte florestal rodoviário são a distância, que determina o volume de madeira a ser transportado por turno de trabalho e o padrão de qualidade das estradas, que influencia o desempenho energético dos veículos de transporte, a durabilidade do veículo, a eficiência operacional, etc. Leite (1992), complementa afirmando que diversos são os fatores que influenciam no desempenho de caminhões e no custo do transporte florestal rodoviário. Entre eles estão: o tipo de veículo usado com a rede viária florestal, condições locais, método de trabalho e fatores inerentes ao ser humano.

Correia et al (2006), comentam, que a grande maioria dos veículos de transporte rodoviário se deslocam em condições operacionais acima dos níveis aceitáveis, sendo a pressão pelos custos o principal fator que contribui para que isso ocorra.

3.6.1 Métodos de cálculo de custos operacionais

Existem diversos métodos para o cálculo de custo. Freitas, *et al.* (2004) realizaram um estudo comparativo de três metodologias utilizadas para o cálculo do custo operacional de veículos de transporte florestal, a saber: FAO América do Norte, FAO/ECE/KWF e Battistella/Scânia. Para tanto, considerou-se um caminhão bitrem, um dos mais utilizados no transporte de carga florestal no Brasil. Nos dois primeiros métodos, o custo foi calculado por hora efetiva de trabalho (he), sendo no último calculado por quilômetro (km), em que se utilizou um fator para converter o custo de km em custo por hora efetiva de trabalho (he). O custo operacional, no método FAO . América do Norte e FAO/ECE/KWF foi dado pelo somatório dos seguintes custos: de maquinário (custos fixos e variáveis), administrativo (custo de administração) e de pessoal (custo de mão-de-obra). No método Battistella/Scânia, esse custo foi resultante do somatório dos custos de maquinário e administrativo. O método FAO América do Norte foi o mais expressivo em termos de custo operacional, sendo o mais indicado no caso em estudo, em razão, principalmente,

da grande aproximação em relação ao custo real. O custo de maquinário representou mais de 85% do custo total em todas as metodologias, destacando-se o custo variável devido ao alto custo do combustível. Observou-se que o custo operacional apresentou valores distintos, uma vez que nesses métodos se utilizam fórmulas diferenciadas num mesmo custo.

Outro modelo para estimativas de custos operacionais do setor rodoviário é o do Banco Mundial, denominado de "Highway Design and Maintenance Standards" – HDM. Este modelo é a base na qual se definem prioridades em termos de financiamento de rodovias inteiras ou trechos isolados e foi utilizado por Leite em 2002 como a base de custos para um modelo de otimização dos custos de transporte de madeira oriundas de reflorestamento.

O mesmo autor conclui em seu trabalho que utilizando-se das metodologias propostas, as atividades de transporte florestal apresentaram custos totais menores, desde que os custos de operação sejam considerados em conjunto com os custos de construção e conservação.

Seixas e Widmer (1993) analisando a escolha de frota quanto ao tipo de veículo disponível, concluíram que a opção do transporte efetuado por meio de composições com maior capacidade de carga, desde que em condições favoráveis, favorece a minimização dos custos operacionais.

3.7 OTIMIZAÇÃO

Devido à importância da colheita e do transporte de madeira na composição do custo do produto final, torna-se necessário incrementar a eficiência destas atividades. Uma das formas de se conseguir isto é pela otimização do processo produtivo

3.7.1 Programação linear

Segundo Martini e Barbosa (1988), a programação linear é uma poderosa ferramenta de planejamento e vem sendo largamente utilizada em todo o mundo.

No setor florestal, seu uso tem-se difundido bastante principalmente nos países desenvolvidos.

A programação linear (PL) é uma das técnicas de otimização mais importantes e mais utilizadas da pesquisa operacional (ZIONTS, 1974). Esta técnica pode resolver problemas gerenciais complexos, tais como os problemas encontrados pelas forças armadas, indústria e agricultura (DANTZIG, 1963).

Um modelo de PL é um modelo matemático desenvolvido para determinar os valores de um conjunto de variáveis (contínuas), visando minimizar (ou maximizar) uma função linear (função objetivo) enquanto satisfaz um sistema de restrições lineares (SALKIN, 1975).

O primeiro método prático para determinar a solução ótima dos modelos de programação linear, o algoritmo simplex, foi apresentado, em 1947, por George B. Dantzig. Outras variações do método simplex, como o método dual simplex, foram propostas para reduzir o número de iterações e o custo computacional na programação linear (DANTZIG, 1963).

Souza (2004) cita que alguns problemas de decisão trabalham com variáveis que devem possuir valores inteiros. Por exemplo, não é possível construir 1,37 escolas ou produzir 11,74 aeronaves. Desta forma, os modelos de PL onde todas as variáveis devem possuir valores inteiros são denominados modelos de programação linear inteira (PLI) e os modelos de programação linear com variáveis inteiras e variáveis contínuas são denominados modelos de programação linear inteira mista (PLIM). Os problemas de PLI que possuem as variáveis inteiras restritas aos valores 0 ou 1 são conhecidos por problemas de programação linear inteira 0-1 (SALKIN, 1975).

3.7.2 Programação linear aplicada à logística florestal

Sessions (1987) desenvolveu o programa NETWORK para microcomputadores que analisa e identifica o mínimo custo, tempo ou distância ao se efetuar o movimento de um ponto a outro em um sistema viário florestal (estradas para caminhões, carreadores, trilhas para arraste etc.). Nesse sistema a

solução do programa indica a combinação de rotas que devem ser usadas, proporcionando o custo total mínimo ou receita máxima.

Paredes e Sessions (1988) desenvolveram um procedimento para aumentar a eficiência de sistemas de transporte florestal, proporcionando modos alternativos de transporte de madeira e escolhas para a localização de pátios de transferência de madeira. Contudo, a respeito do veículo, o programa considera somente duas opções: um caminhão "pequeno" e outro "grande", calculando a localização ótima do pátio a partir de estimativas macroscópicas de composição de frota e conseqüente custo operacional da rede. Esses modelos de transporte chegam a analisar desde a exploração até à construção de estradas, tratando da coleta de um "produto" em diversas fontes e seu transporte até diversos destinos. A preocupação comum à maioria deles refere-se à escolha de uma rota, a mais econômica possível, ou mesmo à localização da rede viária mais indicada a cada situação.

Seixas e Widmer (1993) desenvolveram um método que auxiliasse na racionalização da escolha da frota de veículos rodoviários para transporte de madeira. Baseando-se na solução do problema do transporte através da programação linear, o método descrito neste trabalho permite, em uma situação de diversas origens e um único destino, análises quanto às diferentes opções de veículos, desempenhos, tempos terminais de carga e descarga, comprimento de vias etc. Os resultados obtidos nos estudos de casos mostram a adequação econômica do uso de veículos pesados do tipo "treminhão" e "rodotrem" para o transporte principal de madeira, desde que a rede viária esteja em condições adequadas. Outros resultados mostram também a sensibilidade dos valores estimados de velocidades na escolha da frota. Variações de 2% nas velocidades, causaram a substituição de veículos em alguns trechos.

Lacowicz, et al (2002) estudaram a minimização de custos do transporte rodoviário florestal, através da programação linear inteira e otimização dos tempos de ciclo de transporte. Após a obtenção dos dados de uma empresa florestal, foram elaborados três cenários, quais sejam: Cenário I: levantamento do quadro atual da empresa, como subsídio comparativo após a racionalização e otimização das etapas que mais consomem tempo do ciclo; Cenário II: realizada em função do uso de programação linear, juntamente com a racionalização dos tempos de fila de espera para carga e descarga; Cenário III: além da programação linear e

racionalização dos tempos de espera em fila, utilizou paralelamente, uma otimização do tempo carga e uma elevação da velocidade de transporte. Os resultados mostraram-se significativos, onde a racionalização e a otimização contribuíram para a redução do número de caminhões e do custo total, traduzindose em aumentos na produção dos veículos, na receita bruta e líquida dos freteiros.

Leite (2002) desenvolveu um trabalho para minimização dos custos de transportes na colheita de reflorestamentos, dando ênfase aos aspectos operacionais para a definição das características técnicas das estradas. Para isto abordou tanto particularidades dos veículos como das estradas. Na revisão de literatura e métodos foram considerados sete itens principais: 1) definição dos volumes de transporte, ou demanda; 2) aspectos operacionais; 3) escolha do veículo de transporte; 4) cálculos de custos de operação dos veículos de carga; 5) planejamento, construção e conservação das vias; 6) estudos de viabilidade econômica e 7) aspectos ambientais e sociais incluindo características dos motoristas. Estes itens foram utilizados para se obter a minimização dos custos de transporte, definindo o tipo de veículo mais apropriado, percursos mínimos a serem realizados pelos veículos carregados e vazios como também as melhorias construtivas e de conservação dos sistema viário que proporcionam os maiores ganhos econômicos. A escolha das melhorias no sistema viário é relacionada com a realização do transporte florestal de forma otimizada. As metodologias e práticas selecionadas foram aplicadas na redução dos custos totais de transporte, existentes na colheita de madeira, em dois estudos de caso, em áreas situadas no Sul da Bahia e na Região do Planalto Norte Catarinense. Leite utilizou a metodologia HDM III (Modelo para Projeto de Rodovias e Padrões de Manutenção) calculando-se custos de operação para dez tipos de composições veiculares de carga, utilizadas no transporte de toras de madeira reflorestada e simuladas diferentes condições para inclinações de rampa, raios de curva horizontal e condições de superfície das vias dadas pelo IRI (Índice de Irregularidade Internacional). No estudo da demanda, foi considerada a metodologia do modelo de quatro etapas (geração, distribuição, divisão modal e alocação); aplicando-se aos transportes florestais métodos utilizados para transportes em geral. As características construtivas das vias definiram os custos de operação dos tipos de veículos e desta forma foi possível otimizar tanto a escolha do veículo como o percurso para o transporte. As técnicas utilizadas no transporte, incluindo a definição dos segmentos viários a serem melhorados, tipos de veículos e aspectos de vida econômica foram considerados tendo em vista sua importância nos custos totais. Constatou-se que os benefícios da utilização das metodologias propostas consistem em: 1) definição da demanda do transporte de toras reflorestadas, 2) cálculo dos custos operacionais dos veículos, 3) escolha entre alternativas de tipos de veículos, 4) definição de percursos otimizados e 5) definição dos locais prioritários para implantação de melhorias nas estradas de uso florestal

Berger et al (2003) comentam que a complexidade do planejamento do transporte florestal de madeira leva ao desenvolvimento de métodos que auxiliem na determinação das melhores rotas a serem seguidas por caminhões, para se conseguir um menor custo possível para um máximo volume de madeira posto pátio. Baseando-se na solução do problema do transporte através da programação linear, o método descrito neste trabalho permite, em uma situação de diversas origens e um único destino, análises quanto ao número ideal de viagens, carga ótima por veículo, menor custo por unidade de volume e quilometragem máxima mensal. Os resultados obtidos nos estudos de casos mostram adequação econômica do método de planejamento do transporte por programação linear, havendo um aumento de 22,70% no volume de madeira posto pátio e uma redução de 18,33% no custo por estéreo posto pátio.

Lopes et al (2003) avaliaram a aplicabilidade do programa SNAP III (Scheduling and Network Analysis Program) como ferramenta de apoio no planejamento da colheita e do transporte florestal em condições brasileiras. Os aspectos avaliados foram a definição dos subsistemas de colheita e a determinação de uma rota compatível de transporte de madeira. Inicialmente, determinou-se o custo operacional e de produção das máquinas em sete subsistemas de colheita tecnicamente viáveis para a região de estudo, como também os índices de qualidade e de custos de construção e manutenção de estradas, os quais foram utilizados como dados de entrada no SNAP III. Posteriormente, verificou-se, através de um estudo de caso, a aplicabilidade do programa como ferramenta de apoio no planejamento da colheita e do transporte. De acordo com os resultados, constatou-se que há três categorias de estradas de ocorrência na área de estudo: principal, secundária e terciária, as quais, com base no índice de qualidade encontrado, permitiram uma velocidade média do veículo de transporte de 41,0; 30,3 e 24,3 km/hora e um custo de construção de US\$

5.084,30, US\$ 2.275,28 e US\$ 1.650,00/km, respectivamente. O programa foi capaz de definir com eficiência os subsistemas de colheita técnica e economicamente viável, a rota ótima de transporte e as estradas em uso em cada período do horizonte de planejamento.

Souza (2004) desenvolveu um modelo de algoritmos genéticos que permite aos tomadores de decisões determinar o período de intervenção das equipes de corte nos pontos de produção para minimizar os custos relacionados à colheita e ao transporte principal de madeira cujos resultados foram comparados com um modelo de programação linear, sendo que em uma das estratégias analisadas apresentou os maiores ganhos para a empresa, pois possibilitou uma redução considerável nos custos de transporte.

4. MATERIAIS E MÉTODOS

4.1 MATERIAIS

Os principais materiais utilizados na elaboração deste trabalho foram:

4.1.1 Software e hardware para o modelo de programação linear

Para desenvolver e resolver o modelo de programação linear inteira mista de minimização de custos de transporte de madeira, adequação de estradas de uso florestal, foram utilizados os seguintes *softwares*:

- Planilha eletrônica Microsoft® Excel® 2003
- Extend LINGO/PC®, Release 7.0 (7 Dec 2001) Copyright ® 2001

O *hardware* utilizado foi um notebook Dell[®] Latitude D531 com um processador AMD Turion[®] 64X2 Mobile, Technology TL-60, 2,00 GHz, e 898 MB de RAM.

4.1.2 Dados utilizados para validação do modelo

O modelo foi testado com os dados fornecidos por uma empresa de base florestal com atividades na produção de celulose e papel, localizada em Telêmaco Borba, no estado do Paraná (Figura 1). Esta unidade florestal totalizava uma área de 275.095 hectares e em 2009 foram movimentadas 4.058.000 toneladas de madeira com casca, classificadas em madeira para celulose, energia, serraria e comercialização.

O clima predominante na região (de acordo com a classificação Köppen) é o Subtropical com transição para o Temperado propriamente dito, úmido, mesotérmico, sem estação seca definida (Cfa/Cfb). Os verões são quentes e tendem à concentração de chuvas e, no inverno, as geadas ocorrem com pouca freqüência.

A temperatura média anual é de 19,3° C e a umidade relativa média anual é de 77%. A altitude é de 885 metros acima do nível do mar. A precipitação pluviométrica total anual média é de 1.560 mm.

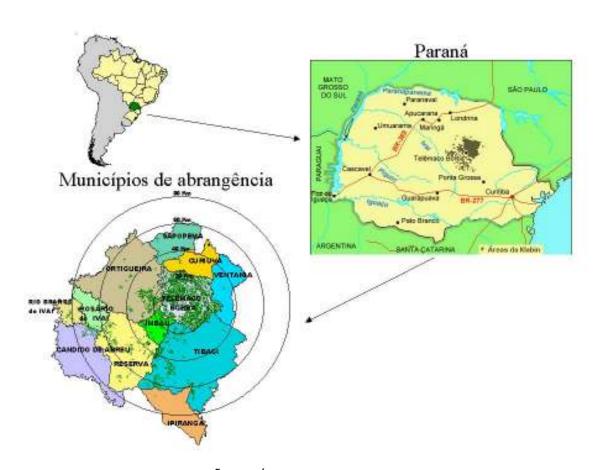


FIGURA 1: LOCALIZAÇÃO DA ÁREA DE ESTUDO

4.1.2.1 Projetos florestais

Foram selecionados 5 projetos florestais (blocos de produção de madeira) com um total de 82 talhões e 610,7 ha (Tabela 09), espacialmente distribuídos de forma a representar a variação de relevo da região. Seus volumes correspondem a 8,1% do volume total de madeira colhido em 2009 pela empresa.

TABELA 09: PROJETOS FLORESTAIS AVALIADOS NO ESTUDO DE CASO

Projeto			Número de	Ároa (ha)	\/ala (t)	
Nome	Sigla Ordem Talhõ		Talhões	Área (ha)	Volume (t)	
Jaguatirica	JGA	1	25	171,5	115.997	
Vila Preta	AVI	2	8	72,6	20.540	
Mirandinha	MIR	3	9	87,9	59.397	
Cirol	CIR	4	7	61,1	27.797	
Marissol	DSN	5	33	217,6	104.908	
Total			82	610,7	328.640	

4.1.2.2 Composições Veiculares de Carga – CVC

Foram considerados no estudo 4 tipos diferentes de CVC para a realização do transporte de madeira: Bitrem (BT), Romeu e Julieta 4 eixos (RJ), Rodotrem - 19,80 m (RD) e Tritrem (TT). As especificações técnicas encontram-se na Tabela 10.

Dentre as diversas opções de cavalos mecânicos utilizadas na região do estudo foi utilizado o Volvo FM com 400 hp e 204 mkgf de torque. Para a composição de cenários cavalos mecânicos mais potentes foi avaliado também o Volvo FM com 245 mkgf de torque.

TABELA 10: ESPECIFICAÇÕES TÉCNICAS DAS CVC AVALIADAS E UTILIZADAS.

TABLEA 10. LOI LOII ICAÇ	CLO ILOIN	ONO DAO C	V O AVALIADAO L O	I ILILADAO.		
Especificações Técnicas	CVC	Um	Marca e Modelo do Cavalo			
Lopedinidações Teernidae	0.0	• • • • • • • • • • • • • • • • • • •	Volvo	Volvo		
			FM	FM		
Potência		HP	400	480		
Torque		mKgf	204	245		
Dianteiro		kgf	4.880	4.920		
Tara no Traseiro		kgf	4.170	4.230		
eixo* Total		kgf	9.050	9.150		
	TT	kgf	16.085	16.085		
Tara da implamanta**	RD	kgf	17.610	17.610		
Tara do implemento**	BT	kgf	10.945	10.945		
	RJ	kgf	11.050	11.050		
	TT	kgf	6.095	6.155		
Peso do implemento no eixo	RD	kgf	6.580	6.640		
de tração ***	BT	kgf	6.095	6.155		
	RJ	kgf	6.970	7.030		
	TT	kgf	6.095	6.155		
Peso total vazio no eixo de	RD	kgf	6.580	6.640		
tração	BT	kgf	6.095	6.155		
	RJ	kgf	6.970	7.030		
	TT	kgf	25.135	25.235		
Tara	RD	kgf	26.660	26.760		
Tala	BT	kgf	19.995	20.095		
	RJ	kgf	20.100	20.200		
	TT	kgf	74.000	74.000		
Peso Bruto Total Combinado	RD	kgf	74.000	74.000		
- PBTC	BT	kgf	57.000	57.000		
	RJ	kgf	57.000	57.000		
	TT	kgf	48.865	48.765		
Peso Líquido - Legal	RD	kgf	47.340	47.240		
i eso Liquido - Legai	BT	kgf	37.005	36.905		
	RJ	kgf	36.900	36.800		

^{*} Conforme especificação técnica dos fabricantes, acesso via web.

** Conforme especificação técnica da NOMA.

A CVC Tritrem, atualmente, não está sendo utilizada pela empresa devido a restrições para conseguir AET, e foi considerada neste estudo por apresentar potencial para redução de custos, uma vez que esteja legalizada.

^{***} Estimado conforme especificação técnica

TT: Tritrem; RD: Rodotrem (19,80); BT: Bitrem; RJ: Romeu e Julieta (4 eixos)

4.1.2.2.1 Especificações técnicas do Bitrem

De acordo com a portaria 86 de 2006 emitida pelo CONTRAN o bitrem pode ser descrito como um conjunto formado por 3 veículos, sendo um veículo trator com 3 eixos, um semi-reboque de 2 eixos com uma 5° roda na traseira de seu chassi e mais um segundo semi-reboque de 2 eixos. Este conjunto tem Peso Bruto Total Combinado – PBTC de 57 t, uma capacidade de carga liquida de aproximadamente 37 t e 7 eixos no total. Comprimento máximo de 19,80 m e autorizado para trafegar diuturnamente sem necessidade de AET.

Para as análises técnicas foi utilizado o Bitrem do fabricante NOMA cujas dimensões e capacidades de carga são apresentados na Figura 2. A tara total considerada foi 20 t e 20,1 t (Tabela 10), respectivamente conforme os cavalos mecânicos escolhidos. De forma ilustrativa o cavalo mecânico utilizado nas figuras é o Scania G 420 CA6X4 CZ STZ.

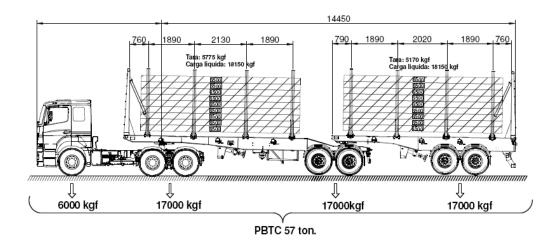


FIGURA 2: DIMENSÕES DO BITREM (medidas em mm)

4.1.2.2.2 Especificações técnicas do Tritrem

De acordo com a portaria 86 de 2006 emitida pelo CONTRAN o tritrem pode ser descrito como um conjunto formado por 4 veículos, sendo um veículo trator com 3 eixos, dois semi-reboque de 2 eixos com uma 5° roda na traseira de cada chassi e mais um terceiro semi-reboque de 2 eixos. Este conjunto tem Peso Bruto Total Combinado – PBTC de 74 t, uma capacidade de carga liquida de aproximadamente 48,8 t e 9 eixos no total. Comprimento máximo de 30,00 m e necessidade de AET.

Para as análises técnicas foi utilizado o Tritrem do fabricante NOMA cujas dimensões e capacidades de carga são apresentados na Figura 3. A tara total considerada foi de 25,1 t e 25,2 t (Tabela 10), respectivamente conforme os cavalos mecânicos escolhidos. De forma ilustrativa o cavalo mecânico utilizado nas figuras é o Scania G 420 CA6X4 CZ STZ.

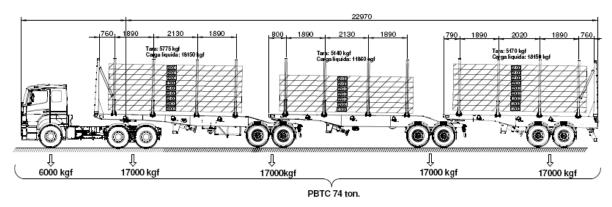


FIGURA 3: DIMENSÕES DO TRITREM (medidas em mm)

4.1.2.2.3 Especificações técnicas do Romeu e Julieta (4 eixos)

De acordo com a portaria 86 de 2006 emitida pelo CONTRAN o Romeu e Julieta (4 eixos) pode ser descrito como um conjunto formado por 2 veículos, sendo um veículo trator com 3 eixos e um reboque de 4 eixos. Este conjunto tem Peso Bruto Total Combinado – PBTC de 57 t, uma capacidade de carga liquida de

aproximadamente 37 t e 7 eixos no total. Comprimento máximo de 19,80 m e autorizado para trafegar diuturnamente sem necessidade de AET.

Para as análises técnicas foi utilizado o Romeu e Julieta (4 eixos) do fabricante NOMA cujas dimensões e capacidades de carga são apresentados na Figura 4. A tara total considerada foi de 20,1 t e 20,2 t (Tabela 10), respectivamente conforme os cavalos mecânicos escolhidos. De forma ilustrativa o cavalo mecânico utilizado nas figuras é o Scania G 420 CA6X4 CZ STZ.

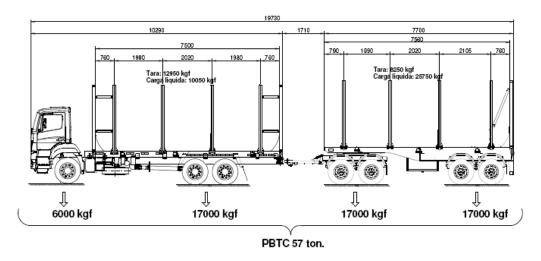


FIGURA 4: DIMENSÕES DO ROMEU E JULIETA - 4 EIXOS (medidas em mm)

4.1.2.2.4 Especificações técnicas do Rodotrem

De acordo com a portaria 86 de 2006 emitida pelo CONTRAN o Rodotrem pode ser descrito como um conjunto formado por 4 veículos, sendo um veículo trator com 3 eixos, um semi-reboque de 2 eixos com um engate na traseira de seu chassi, um *dolly* intermediário com 2 eixos e uma 5° roda instalada em sua estrutura e mais um segundo semi-reboque de 2 eixos. Este conjunto tem Peso Bruto Total Combinado – PBTC de 74 t, uma capacidade de carga liquida de aproximadamente 47,3 t e 9 eixos no total. Comprimento máximo de 30,00 m e necessidade de AET. No caso de rodotrens com 19,80 m para 74 t, licenciados até 27 de julho de 2007, a resolução 246 garante a sua utilização até o seu sucateamento.

Para as análises técnicas foi utilizado o Rodotrem cujas dimensões e capacidades de carga são representados na Figura 5. A tara total considerada foi de 26,6 t e 26,7 t (Tabela 10), respectivamente conforme os cavalos mecânicos escolhidos. De forma ilustrativa o cavalo mecânico utilizado nas figuras é o Scania G 420 CA6X4 CZ STZ.

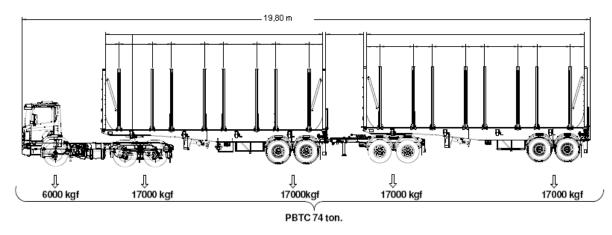


FIGURA 5: DIMENSÕES DO RODOTREM

De forma ilustrativa é apresentado na Figura 6 as dimensões, capacidades de carga do Rodotrem do fabricante NOMA, que podem ser homologados.

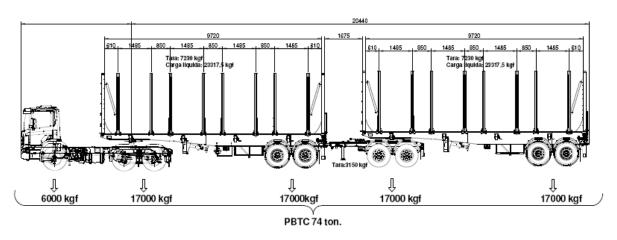


FIGURA 6: DIMENSÕES DO RODOTREM HOMOLOGADO (medidas em mm)

4.1.2.3 Estradas de uso florestal

Para classificação qualitativa das estradas foi utilizada a seguinte conceituação:

Estradas principais: são estradas com revestimento primário, com largura do leito igual ou superior a 6 metros, que propiciam tráfego em duas vias durante todo o ano.

Estradas secundárias: são estradas com revestimento primário, com largura do leito entre 3 e 4 metros, que propiciam tráfego durante todo o ano em apenas uma via, porém com alargamentos em alguns pontos para permitir passagem.

Estradas terciárias e ramais: são estradas de leito natural com largura do leito entre 3 e 4 metros, que permitem o tráfego de CVC somente quando secas, e em apenas uma via, porém, com alargamentos e viradores em alguns pontos para permitir passagem e retorno. Também são conhecidas como divisoras no caso em que dividem dois talhões.

Contornos e aceiros: são estradas de terra com largura do leito entre 3 e 4 metros, normalmente localizados nos fundos dos talhões fazendo divisa com florestas nativas, que permitem o tráfego de CVC somente quando secas, e em apenas um sentido.

A malha viária florestal utilizada para o transporte de madeira dentro dos projetos compreendeu uma extensão total de 72,1 km, sendo 5,4 km de estradas primárias, 4,2 km de estradas secundárias, 40,7 km de estradas de terciárias e 21,8 km de contornos (Tabela 11).

TABELA 11: QUANTIDADE DE ESTRADAS DENTRO DOS PROJETOS FLORESTAIS

Drojoto	Estradas nos Projetos (km)						
Projeto	Primárias	Secundárias	Terciárias	Contornos	Total		
JGA	-	4,23	15,8	10,5	30,5		
AVI	0,50	-	4,4	2,4	7,3		
MIR	0,25	-	6,5	3,4	10,2		
CIR	-	-	7,9	2,9	10,8		
DSN	4,65	-	6,2	2,6	13,4		
Total	5,4	4,2	40,7	21,8	72,1		

Os projetos encontram-se em média a 50,9 km da unidade industrial, sendo as rotas compostas por 71% de asfalto, 23,6% de estradas primárias e 5,4% de estradas secundárias (Tabela 12).

TABELA 12: ESTRADAS DAS ROTAS ENTRE OS PROJETOS E A UNIDADE INDUSTRIAL

Projeto -	Estradas na Rota (km)						
Projeto	Asfalto	Primárias	Secundárias	Total			
JGA	9,2	23,2	2,7	35,2			
AVI	23,3	12,9	1,7	37,9			
MIR	4,3	13,5	1,6	19,3			
CIR	28,1	5,6	10,0	43,7			
DSN	85,1	2,5	0,9	88,4			
Total	150,0	57,7	16,8	224,5			
Média*	36,1	12,0	2,7	50,9			

^{*} ponderada pelo volume de madeira dos projetos

De acordo com o índice de qualidade de irregularidade (IRI) citado por Leite (2002), as estradas primárias do estudo de caso poderiam ser classificadas como medianamente suave e as secundárias como irregular, conforme os valores apresentados da Tabela 04.

4.1.2.4 Baldeio de madeira

O baldeio de madeira considerado neste trabalho consistiu na utilização de um módulo composto por 3 *Timber Hauler* modelo Volvo A30E com reboques e 3 escavadeiras com garra modelo Volvo ECB 240, sendo uma reserva (Figura 7).

Este sistema propicia a extração de madeira em relevos forte ondulado, conforme a classificação da EMBRAPA, com rampas de até 60% segundo Seixas e Camilo (2008), garantindo a remoção de 100% do volume de madeira das áreas avaliadas.

A capacidade de carga do Timber Hauler A30E considerada foi de 30.000 kg e de 60.000 kg quando acoplado o reboque.

FIGURA 7: TIMBER HAULER VOLVO A30E COM REBOQUE Fonte: Duratex

4.1.2.5 Apoio ao transporte

O apoio ao transporte de madeira consiste em uma operação onde é adicionado mais força aumentada a Força disponível na roda (FR) ou a Força de aderência (Fad) da CVC através da adição de um segundo equipamento. Este aumento de força se faz necessário quando a CVC não consegue vencer a rampa no momento da sua partida carregada ou em subidas íngremes durante o trajeto até a unidade industrial, ou também quando existem umidade excessiva na estrada que faz com que a CVC patine.

Comumente são utilizados dois equipamentos para este fim:

- Tratores florestais com guincho: são tratores denominados s*kidders*, com aproximadamente 182 hp, equipados com guinchos de aproximadamente 18.360 kgf.
- Tratores agrícolas com guincho: são tratores agrícolas, normalmente com 170 hp, equipados com guinchos de 30.000 kgf.

A operação de apoio ao transporte, ilustrado na Figura 8 considerada nas análises foi realizada por um trator florestal *skidder* modelo CAT 525 de 182 hp, com torque na roda 896 Nm, pneus 30.5L x 32, 16 PR, e peso aproximado de 17,2 t; equipado com guincho de tração máxima no cabo de 185 kN e cabo de 7/8 pol.

FIGURA 8: FOTO ILUSTRATIVA DE OPERAÇÃO DE APOIO COM TRATOR FLORESTAL TIPO *SKIDDER*Fonte: Klabin

4.2 MÉTODOS

A metodologia principal para se alcançar o principal resultado deste trabalho consistiu no desenvolvimento de um modelo matemático contendo os custos a serem minimizados, sujeitos a uma série de restrições que estabelecem os limites que devem ser atingidos.

4.2.1 Programação linear

No modelo de programação linear inteira mista os índices das variáveis foram representados pelas letras minúsculas: *i* para os projetos (blocos ou pontos de produção), *j* para as CVC (Composições Veiculares de Carga), *I* para as estradas atuais dentro dos projetos, *m* para as estradas futuras dentro dos projetos florestais. As letras maiúsculas utilizadas correspondem ao valor máximo dos índices.

4.2.1.1 Função Objetivo

Para facilitar o entendimento, a função objetivo foi separada em quatro expressões: custos de adequação de estradas dentro dos projetos; custos de frete dos projetos até a unidade industrial; custo de adequação das estradas das rotas dos projetos até a unidade industrial; e custo de baldeio.

4.2.1.1.1 Custos de adequação das estradas dentro dos projetos

A expressão (8) envolve o custo total de adequação de estradas, em Reais (R\$), para os projetos avaliados:

$$Z_1 = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{m=1}^{M} \left(Caep_{ilm} \cdot Y_{ilm} \right) \tag{8}$$

onde $Caep_{ilm}$ é o custo de adequação de estradas por projeto i (R\$). A formulação do problema permite que as variáveis de decisão Y_{ilm} assumam dois estados: 1, se o segmento tiver o menor custo, e 0 caso contrário. Os custos são referentes aos diversos níveis de investimentos necessários para transformar o padrão de uma estrada (grau de dificuldade), permitindo que diferentes CVC de maior PBTC venham a transitar naquele trecho.

4.2.1.1.2 Custos de frete dos projetos até a unidade industrial

A expressão (9) trata do custo total de frete por CVC dos projetos até a unidade industrial, em Reais (R\$):

$$Z_1 = \sum_{i=1}^{I} \sum_{j=1}^{J} (Cf_{ij}.V_{ij})$$
(9)

onde Cfij é o custo unitário de frete por CVC j, do projeto i até a unidade industrial (R\$ / t) e Vij é o volume de madeira a ser transportado do projeto i por CVC j.

4.2.1.1.3 Custos de adequação das estradas das rotas até a unidade industrial

A expressão (10) trata do custo total de adequação das rotas por CVC até a unidade industrial, em Reais (R\$), para os projetos avaliados:

$$Z_{1} = \sum_{i=1}^{I} \sum_{j=1}^{J} (Car_{ij}.X_{ij})$$
 (10)

onde Car_{ij} é o custo de adequação das rotas por projeto i (R\$) por CVC j. A formulação do problema permite que as variáveis de decisão X_{ij} assumam dois estados: 1, se a rota tiver o menor custo e 0, caso contrário.

4.2.1.1.4 Custos de baldeio

A expressão (11) trata do custo total de baldeio, em Reais (R\$), para os projetos avaliados:

$$Z_1 = \sum_{i=1}^{L} \sum_{l=1}^{L} (Cb_{il} \cdot V_{il})$$
 (11)

onde Cb_{ij} é o custo unitário de baldeio do projeto i (R\$ / t) e Vij é o volume de madeira a baldeada do projeto i.

4.2.1.1.5 Síntese da função objetivo

A função objetivo (12) utilizada no modelo de PLIM visa minimizar o somatório das expressões (8), (9), (10) e (11).

$$\min Z = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{m=1}^{M} (Caep_{ilm} \cdot Y_{ilm}) + \sum_{i=1}^{I} \sum_{j=1}^{J} (Cf_{ij} \cdot V_{ij}) + \sum_{i=1}^{I} \sum_{j=1}^{J} (Car_{ij} \cdot X_{ij}) + \sum_{i=1}^{I} \sum_{l=1}^{L} (Cb_{il} \cdot V_{il})$$
 (12)

4.2.1.2 Restrições

O primeiro conjunto de restrições (13) assegura os investimentos em estradas dentro dos projetos.

$$\sum_{m=1}^{M} SY_{ilm} = 1 \qquad \forall i, \forall l$$
 (13)

A variável SY é binária e por isto assume dois estados (1 e 0). Será 1 se a estrada / dentro do projeto i for escolhida e 0 caso contrário.

O segundo conjunto de restrições (14) assegura que o volume de madeira a ser transportado $V1_{im}$ de cada projeto i após adequação de estradas m, seja igual ao volume de madeira disponível antes da adequação $V0_{il}$.

$$\sum_{l=1}^{L} (SY_{ilm} \cdot V0_{il}) = V1_{im} \qquad \forall i, \forall m$$
(14)

O terceiro conjunto de restrições (15) cria o volume de madeira *V*2 no compartimento i,1 através da soma do volume baldeado *Vb* do projeto i mais o volume pós adequação de estradas *V*1 do projeto i.

$$\sum_{l=2}^{L} (Vb_{il}) + V1_{i,1} = V2_{i,1} \qquad \forall i$$
 (15)

As expressões (16) e (17) são para balanço e garantia de integridade do sistema. A restrição dada pela expressão (16) garante que o volume pós baldeio *V2* no projeto i não será maior que o volume pós adequação de estradas *V1* menos o volume baldeado *Vb* de cada projeto i.

$$V1_{i,l} - Vb_{i,l} = V2_{i,l}$$
 $\forall i, l = 2,3,...,L$ (16)

A restrição dada pela expressão (17) garante que o volume baldeado *Vb* no projeto i será menor ou igual ao volume pós adequação de estradas *V1*.

$$Vb_{i,l} \le V1_{i,1}$$
 $\forall i, l = 2,3,...,L$ (17)

A decisão de investimento na rota é dada pela expressão (18), onde SR é a variável de decisão que estabelece o investimento na rota.

$$\sum_{i=1}^{J} SR_{IJ} \qquad \forall i \tag{18}$$

A expressão (19) converte o volume por projeto e grau de dificuldade em volume por projeto e tipo de composição V*cvc*.

$$\sum_{m=1}^{M} V2_{im} \cdot RT_{imj} = Vcvc_{ij} \qquad \forall i, \forall j$$
 (19)

As expressões (20), (21), (22) e (23), estabelecem que o volume a ser transportado por bloco e composição ($Vcvc_{IJ}$) deve ser menor ou igual ao volume disponível por tipo de composição (V_{ij});

$$V_{i1} \le Vcvc_{i1} \qquad \forall i \tag{20}$$

$$\sum_{i=1}^{2} V_{ij} \le V c v c_{i2} \qquad \forall i \tag{21}$$

$$\sum_{j=1}^{3} V_{ij} \le V c v c_{i3} \qquad \forall i$$
 (22)

$$\sum_{j=1}^{4} V_{ij} \le V c v c_{i4} \qquad \forall i \tag{23}$$

As expressões (24), (25), (26) e (27) estabelecem qual grau de investimento permite o transporte por tipo de composição, onde V_{ij} é o volume disponível por composição j no projeto i; VP_i é o volume de cada projeto i e SR_{ij} é a variável de decisão se ocorrerá ou não o transporte do projeto i pela composição j.

$$V_{i4} \le VP_i \cdot SR_{i1} + VP_i \cdot SR_{i2} + VP_i \cdot SR_{i3} + VP_i \cdot SR_{i4} \qquad \forall i$$
 (24)

$$V_{i3} \le VP_i \cdot SR_{i1} + VP_i \cdot SR_{i2} + VP_i \cdot SR_{i3} \qquad \forall i$$
 (25)

$$V_{i2} \le VP_i \cdot SR_{i1} + VP_i \cdot SR_{i2} \qquad \forall i$$
 (26)

$$V_{i1} \le VP_i \cdot SR_{i1} \qquad \forall i \tag{27}$$

A variável *SR* é binária e por isto assume dois estados (1 e 0). Será 1 se a rota do projeto *i* para a CVC *j* for a escolhida e 0 caso contrário.

A restrição de volume mínimo de segurança de madeira no revestimento primário ou baldeada *Vs* para cada projeto i é dada pela expressão (28), onde *V2* é volume de madeira nas estradas adequadas com revestimento primário *V1*, somado ao volume de madeira baldeada *Vb*.

$$\sum_{l=1}^{4} V2_{il} \ge Vs_i \qquad \forall i \tag{28}$$

A expressão (29) demonstra a restrição do volume máximo de madeira que pode ser transportado *Vij* de um projeto i, com o volume que pode ser transportado *Vcvc* com uma CVC j.

$$V_{i2} \le Vcvc_i \qquad \forall i \tag{29}$$

No caso específico deste modelo a composição 2 refere-se ao rodotrem (19,80m).

4.2.2 Cenários avaliados

Em virtude das diversas possibilidades de análise de resultados do modelo, foram propostos 5 cenários diferentes em função do peso das composições, potência do motor, apoio com *skidder* e investimento na rota conforme a Tabela 13.

TABELA 13: RELAÇÃO DE CENÁRIOS ESTUDADOS

		Variáveis										
Cenários	Peso sobre o eixo de tração		Potência		Apoio - s <i>kidder</i>		Investimento na Rota					
	Legal	Técnico	Atual	Maior	Sem	Com	Sem	Com				
Cenário I	X		Х		Х		Χ					
Cenário II	X		X			Χ	Χ					
Cenário III	X		X		Χ			X				
Cenário IV	X			X	Х		Χ					
Cenário V		X	X			Χ	Χ					

A avaliação da variável peso legal e peso técnico sobre o eixo de tração justifica-se devido a atual legislação regulamentar o peso máximo admissível que se pode colocar sobre os eixos de tração das CVC, o que limita força disponível na roda (FR) ou a força de aderência (Fad) e a rampa máxima (i) que cada caminhão consegue arrancar carregado. Porém, caso se aumente este peso, respeitando-se o PBT, as composições poderão alcançar rampas maiores. Esta aplicação torna-se viável em casos onde as estradas de uso florestal de acesso a unidade industrial são particulares, podendo até ser extrapolado o PBT e PBTC, respectivamente.

A avaliação da operação de apoio ao transporte com trator florestal *skidder* com guincho justifica-se a fim de saber qual a rampa máxima de arranque que as diferentes CVC conseguirão vencer quando se aumenta força disponível na roda (FR) ou a força de aderência (Fad) disponível e se este novo limite de rampa, com custo adicional do apoio, é compensado em função da diminuição de custos de adequação das estradas.

A variável potência do motor foi avaliada para analisar se o aumento do torque do motor irá aumentar a rampa de arranque a ser vencida pelas CVC e se a diminuição do tempo de viagem compensará o investimento maior feito na aquisição do cavalo.

Foi analisado também se o investimento a mais de recursos nas rotas de acesso dos projetos florestais para melhorar o padrão da pista de rolamento, deixando-as com menor irregularidade (IRI) e com menos buracos, é compensado pela redução dos custos de frete por diminuição dos gastos com manutenção, aumento da vida útil dos pneus e aumento da velocidade média nestes trechos.

Os cenários podem ser assim descritos:

- O cenário I prevê a análise das CVC com peso legal sobre o eixo de tração, potência do motor dos caminhões conforme a atual utilizada pela empresa, sem apoio ao transporte com *skidder* e sem investimentos para melhorias nas rotas.
- O cenário II prevê a análise das CVC com peso legal sobre o eixo de tração, potência do motor dos caminhões conforme a atual utilizada pela empresa, com apoio ao transporte com *skidder* e sem investimentos para melhorias nas rotas.
- O cenário III prevê a análise das CVC com peso legal sobre o eixo de tração, potência do motor dos caminhões conforme a atual utilizada pela empresa, sem apoio ao transporte com *skidder* e com investimentos para melhorias nas rotas.
- O cenário IV prevê a análise das CVC com peso legal sobre o eixo de tração, aumento da potência do motor dos caminhões, sem apoio ao transporte com *skidder* e sem investimentos para melhorias nas rotas.
- O cenário V prevê a análise das CVC com peso técnico sobre o eixo de tração, potência do motor dos caminhões conforme a atual utilizada pela empresa, com apoio ao transporte com *skidder* e sem investimentos para melhorias nas rotas. Este é o cenário que mais se assemelha com as condições operacionais da empresa analisada.

O cenário I pode ser considerado como o cenário base para comparações, pois os demais foram alternativas criadas pela mudança em uma ou duas variáveis principais.

4.2.3 Metodologia empregada na obtenção da base cartográfica das estradas.

O levantamento de campo para obtenção das coordenadas geográficas e das altitudes das estradas foi realizado com receptor de sinal GPS marca TRIMBLE, modelo PRO XT com antena externa imantada e fixada no capô do veículo Toyota Hilux CD 4x4.

O receptor de sinal GPS PRO XT é um receptor que armazena portadora L1 e código C/A. O receptor foi configurado com tempo de coleta de 1 segundo e armazenar dados das portadoras.

Os arquivos digitais gerados em campo pelo GPS foram descarregados em micro computador através do software PATHFINDER, o qual é o gerenciador e processador de arquivos de campo da TRIMBLE.

Os arquivos de campo foram processados no software PATHFINDER versão 4.0, que estava com as seguintes configurações:

- Sistema UTM (Universal Transverso de Mercator);
- Datum SAD 69;
- Correção diferencial através das portadoras.

Para correção diferencial foi utilizada a base da Santiago e Cintra localizada em Guarapuava cuja monografia está no Anexo I.

Após a devida correção diferencial no software PATHFINDER os arquivos foram exportados no formato DXF e 3D e abertos no software Topograph 98SE, versão 3.85.

No software Topograph foram importados os arquivos na extensão DXF 3D e editados no modulo projetos, onde foram gerados os perfis verticais por estradas, identificando os pontos de rampa com maior declividade, conforme exemplificado no anexo II.

Foi utilizado o software ArcGis para inserir os perfis verticais na base cartográfica das fazendas na extensão shapefile.

4.2.4 Classificação das estradas

Durante o levantamento de campo, as estradas foram previamente classificadas de acordo com a nomenclatura descrita no item 4.1.2.3, respectivamente em estradas: primárias, secundárias, terciárias, contornos e aceiros.

4.2.5 Cálculo das limitações técnicas de operação das CVC

Para cada cenário proposto foram calculados os limites técnicos de operação de cada CVC de acordo com a literatura citada no item 3.4.7 demonstrados no anexo III. Estes limites geram o principal parâmetro para a reclassificação das estradas em graus de dificuldade e posterior estimativa de custo de adequação de cada projeto florestal.

Os coeficientes de atrito estático pneu/solo utilizados foram:

- Estradas com leito natural: 0,50 (Sem revestimento argiloso seco)
- Estradas com revestimento primário: 0,55
 (Revestimento primário estabilizado)
- Estradas com revestimento definitivo: 0,7 (Pavimento rígido/flexível)

Os coeficientes de resistência ao rolamento utilizados foram:

- Estradas com leito natural: 35 (Sem revestimento argiloso seco)
- Estradas com revestimento primário: 18
 (Estabilizado granulometricamente moderadamente compactado)
- Estradas asfaltadas: 9 (revestimento rígido médio)

Todas as rampas foram calculadas para o arranque carregado das CVC, a partir de uma velocidade inicial igual a zero. Desta forma a resistência aerodinâmica fica próxima a zero e foi desconsiderada.

O cálculo de rampa máximo a ser vencido por uma CVC foi calculado a partir da resultante que quase zera força disponível na roda (FR) a força de aderência (Fad) com a força de resistência ao movimento (R). A Fad deve ser um pouco maior que a R para que haja movimento, caso seja menor ou igual a zero o caminhão não se movimenta.

Também foi calculado a rampa máxima que as CVC conseguem vencer arrancando vazias, cuja limitação impacta no planejamento operacional dos projetos florestais.

4.2.6 Critério de classificação das estradas em graus de dificuldade

O resultado do trabalho gerado para ser realizada uma atividade, quando analisado por unidade de tempo, é conhecido como produtividade. Normalmente, esta resultante de esforço é influenciada por diversas variáveis inerentes ao ambiente, máquinas, pessoas e demais dimensões que a partir de uma combinação ótima fornecem o maior resultado. Quando uma ou mais destas variáveis começam a diminuir este valor máximo, pode-se dizer que o nível da dificuldade está aumentando.

Neste trabalho foi utilizado este conceito a fim de categorizar níveis de dificuldade que diminuem a produtividade do transporte de madeira, influenciados principalmente pelo relevo e tipo de pavimento.

O modelo de programação linear foi desenvolvido para suportar 8 diferentes graus de dificuldade de estradas, definidos de acordo com o tipo de pavimento e declividade.

Para a parametrização das estradas em graus de dificuldade (GD) foram definidos intervalos de classe de rampa conforme as limitações técnicas das CVC, analisadas em cada cenário e compostas com pavimentos de leito natural e revestimento primário, conforme exemplificado na Tabela 14.

TABELA 14: EXEMPLO DE PARAMETRIZAÇÃO DOS GRAUS DE DIFICULDADE (GD) POR CENÁRIO.

Cenário	Pavimento	Rampa	GD
		<u>< 8%</u>	GD 1
	Dovoctimento primário	8,1 - 12 %	GD 2
	Revestimento primário	12,1 - 15 %	GD 3
1		> 15,1%	GD 4
ı		<u><</u> 8%	GD 5
	Leito natural	8,1 - 12 %	GD 6
	Leito Haturai	12,1 - 15 %	GD 7
		> 15,1%	GD 8

4.2.7 Regra de transporte

De acordo com as características operacionais de cada CVC definiu-se uma regra de transporte válida para cada cenário e projeto florestal, onde especificou-se qual caminhão pode trafegar em qual ou quais graus de dificuldade, em função do cálculo de rampa da cada CVC, conforme exemplo demonstrado na Tabela 15.

TABELA 15: EXEMPLO DE REGRA DE TRANSPORTE PARA AS DIFERENTES CVC

Cenário	GD	Tritrem	Rodotrem	Bitrem	Romeu e Julieta
	GD 1	Х	Х	Х	Х
	GD 2	Χ	X	X	X
	GD 3			X	Χ
	GD 4				
ı	GD 5	Х	X	Х	Χ
	GD 6			X	X
	GD 7				
	GD 8				

Conforme o demonstrativo de cálculos do Anexo III, a CVC Tritrem possui limites operacionais de partida em rampa, quando carregado, de 8,0% em leito natural; 10,8% em revestimento primário e 15,2% em revestimento definitivo.

4.2.8 Planejamento operacional dos projetos florestais

A partir dos mapas planialtimetricos dos projetos florestais, conforme exemplo demonstrado no Anexo IV e de vistorias em campo, foi definido o microplanejamento de cada talhão com os locais e volumes de colheita de madeira, necessidade de construção de ramais, pontos de estocagem de madeira baldeada e demais restrições operacionais. Também foram definidos o sentido de trajeto das CVC e os viradores, com o qual pode-se avaliar as rampas no sentido vazio e

carregado e classificar os segmentos de estradas conforme os graus de dificuldade.

Os volumes estocados nos estaleiros definem quanto de madeira sai em cada segmento de estrada classificado por grau de dificuldade.

4.2.9 Cálculo do custo de adequação das estradas dos projetos florestais

Os custos de adequação de estradas para os diferentes graus de dificuldade foram definidos a partir de uma tabela de preços utilizada pela empresa na contratação de serviços de estradas de uso florestal conforme o Anexo V. Os preços incluem custos fixos e variáveis, lucro e impostos.

Para cada cenário avaliado, foram calculados os custos por metro linear para adequação de um grau superior para um grau inferior através da identificação das atividades necessárias para sua execução. Na medida em que se aumentam os investimentos nas estradas, transformando de um grau de dificuldade 3 para um grau de dificuldade 1, por exemplo, libera-se o transporte com CVC de maior PBTC, como pode ser visto na Tabela 15, cujo custo do frete tende a ser menor.

Os custos foram padronizados para todos os projetos avaliados e o demonstrativo de cálculo de adequação encontra-se no Anexo V.

4.2.10 Cálculo do custo do frete

Cada tipo de composição de transporte de madeira possui uma produtividade em função das características técnicas e condições operacionais a que são submetidas. Em função destas variáveis, associadas aos dados de custos fixos e variáveis, lucro e impostos, foi construído um modelo para o cálculo do custo por tonelada transportada para cada tipo de caminhão para cada projeto florestal em cada cenário avaliado, exemplificado na Tabela 16. Este modelo foi validado aferindo-se os resultados com a tabela de fretes da empresa avaliada.

TABELA 16: EXEMPLO DE CUSTO DE FRETE DE MADEIRA CALCULADOS POR PROJETO FLORESTAL

T TOOL TO TEST	TOOL OT LOTTE OTTE									
Projeto	Distância de	Custo (R\$ / t)								
Florestal	Transporte (km)	Tritrem	Rodotrem	Bitrem	Romeu e Julieta					
JGA	35,2	11,31	10,85	13,89	13,86					
AVI	37,9	11,91	11,42	14,62	14,59					
MIR	19,3	7,82	7,51	9,60	9,57					
CIR	43,7	13,20	12,65	16,20	16,18					
DSN	88,4	23,07	22,09	28,33	28,30					

Para fins de cálculo considerou-se que a CVC foi financiada, utilizou-se uma margem de lucro de 8% e os impostos incidentes foram: CSLL 9%; IR 25%; PIS/COFINS 4,75%; ISS 2,00%. O ICMS no caso da Empresa é diferido e não entra como custo no transporte de madeira.

Os dados das CVC, as premissas operacionais adotadas nos cálculos e a exemplificação dos cálculos de frete para uma distância específica encontram-se no Anexo VI.

4.2.11 Custo do baldeio

Para o cálculo do custo de baldeio foi utilizado o custo operacional por tonelada apurado pela empresa avaliada, acrescidos de lucro e impostos no valor de R\$ 7,97 / t para distâncias até 3 km.

4.2.12 Custo do apoio

Para o custo de apoio ao transporte com trator florestal *skidder* foi utilizado o preço pago pela empresa por este serviço às empresas contratadas no valor de R\$ 0,82 / t. Comumente este valor é pago junto do serviço de carregamento para toda madeira carregada por ser executado pelo mesmo prestador de serviço.

4.2.13 Madeira disponível para transporte com tempo chuvoso (restrição climática)

Depois do relevo, a chuva pode ser considerada a segunda maior restrição ao transporte de madeira, pois limita o tráfego nas estradas sem revestimento primário fazendo diminuir a produtividade e aumentando os custos devido aos caminhões ficarem parados esperando uma melhoria das condições operacionais para voltarem a trafegar.

Na região do estudo chove em média 1.560 mm por ano em aproximadamente 95 dias, conforme o Gráfico 1. Com o objetivo de garantir o abastecimento industrial e manter a produtividade dos caminhões mesmo sob condições de chuva, o modelo desenvolvido possibilita estabelecer uma meta de madeira que deve estar disponível nas estradas de grau de dificuldade 1, 2, 3 e 4. Esta disponibilidade pode ser realizada através de adequação das estradas de graus maiores ou pelo baldeio. Nos cenários estudados, para cada 1 dia de chuva foi acrescido mais 1 dia de restrição para secagem do solo, o que resulta como meta 190 dias por ano ou aproximadamente 50% do volume de transporte madeira em estradas com revestimento primário.

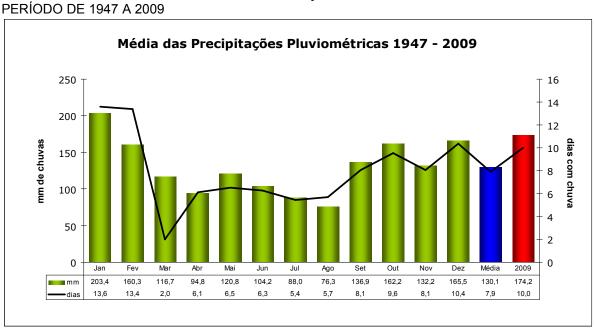


GRÁFICO 1: MÉDIAS DAS PRECIPITAÇÕES PLUVIOMÉTRICAS DA EMPRESA NO PERÍODO DE 1947 A 2009

Fonte: Adaptado de Klabin - 2010

Nos cenários avaliados, para cada projeto foi alocado metade do volume disponível em estradas com revestimento primário para diminuir as mudanças das frentes de colheita de madeira, porém o modelo permite que sejam alocados mais ou menos volumes conforme a estratégia de abastecimento que engloba uma visão geral de estradas, colheita, transporte, pátio, estoques de processo e demandas de comercialização.

4.2.14 Limitações de transporte de madeira por tipo de CVC

A empresa avaliada possui em sua frota um número fixo de 17 CVC do tipo Rodotrem com 19,80 m que podem ser utilizadas até o seu sucateamento. Em função desta limitação o modelo desenvolvido possui uma restrição de volume máximo de transporte para esta composição, evitando assim que a solução ótima aloque mais volume do que é possível ser transportado com estes caminhões.

5 RESULTADOS

Os principais resultados obtidos através da resolução do modelo matemático de programação linear para os cinco cenários avaliados foram:

5.1 CENÁRIO I

No cenário I foi avaliado o modelo de minimização de custos de transporte de madeira, estradas de uso florestal e baldeio de toras, considerando-se que as CVC irão trafegar com o PBTC legal, conforme definido pela legislação. A potência dos cavalos mecânicos foi similar a utilizada pelas empresas prestadoras de serviço do local do estudo, não houve uma máquina para dar apoio (*skidder*) e não houveram investimentos para melhorias significativas que diminuam o IRI na rota, apenas as manutenções necessárias para o tráfego.

5.1.1 Inputs do Cenário I

Os dados de entrada utilizados para resolução do Cenário I foram:

5.1.1.1 Cálculos dos limites técnicos de rampa de cada CVC

Conforme demonstrado na Tabela 17, para o cenário I a máxima rampa calculada possível de ser vencida por um Tritrem e um Rodotrem carregado em uma estrada de leito natural foi de 8,0%; para o Bitrem e Romeu e Julieta (4 eixos) este limite é de 11,4%. Para estradas com revestimento primário e revestimento definitivo as rampas máximas aumentam devido ao aumento do coeficiente de atrito pneu/solo e diminuição da resistência ao rolamento, sendo 10,8% a máxima

para Tritrem e Rodotrem e 14,6% para Bitrem e Romeu e Julieta (4 eixos); e 15,2% e 20% respectivamente. O detalhamento dos cálculos pode ser verificado no Anexo III.

TABELA 17: RAMPAS MÁXIMAS VENCIDAS PELAS CVC CARREGADAS NO CENÁRIO I

	Pavimento						
CVC	Leito	Revestimento	Revestimento				
	natural	primário	definitivo				
Tritrem	8,0%	10,8%	15,2%				
Rodotrem	8,0%	10,8%	15,2%				
Bitrem	11,4%	14,6%	20,0%				
Romeu e Julieta	11,4%	14,6%	20,0%				

No caso do trajeto vazio das CVC até os projetos, as rampas máximas possíveis de serem vencidas são apresentadas na Tabela 18. Para o Tritrem em estradas de leito natural, este limite é de 8,6%; para o Rodotrem 8,8%, para o Bitrem 11,7% e para o Romeu e Julieta (4 eixos) 13,8%. As variações entre as CVC são explicadas pelas diferentes forças, compostas pelo peso do cavalo e parte do peso da composição, aplicadas sobre os eixos de tração. No caso de um pavimento com revestimento primário os limites máximos de rampa obtidos foram de 11,5 % para o Tritrem, 11,8% para o Rodotrem, 15,0% para o Britrem e 17,3% para o Romeu e Julieta (4 eixos). Nas estradas com revestimento definitivo os limites foram de 16,1% para o Tritrem, 16,4% para o Rodotrem, 20,4% para o Bitrem e 23,4% para o Romeu e Julieta (4 eixos). O detalhamento dos cálculos pode ser verificado no Anexo III.

TABELA 18: RAMPAS MÁXIMAS VENCIDAS PELAS CVC VAZIAS

		Pavimento	
CVC	Leito	Revestimento	Revestimento
	natural	primário	definitivo
Tritrem	8,6%	11,5%	16,1%
Rodotrem	8,8%	11,8%	16,4%
Bitrem	11,7%	15,0%	20,4%
Romeu e Julieta	13,8%	17,3%	23,4%

Estes resultados de limites de rampa quando vazio foram considerados para todos os cenários.

5.1.1.2 Parametrização dos graus de dificuldade

Com base no tipo de pavimento e nas rampas máximas vencidas por cada CVC os parâmetros definidos para cada grau de dificuldade no cenário I ficaram conforme demonstrado na Tabela 19.

TABELA 19: PARAMETRIZAÇÃO DOS GRAUS DE DIFICULDADE PARA O CENÁRIO I

Pavimento	Rampa	GD
Favilliento		
	<u><</u> 8%	GD 1
Dovostimente primário	8,1 - 11,4 %	GD 2
Revestimento primário	11,5 - 14,6%	GD 3
	> 14,7%	GD 4
	<u><</u> 8%	GD 5
Leito natural	8,1 - 11,4 %	GD 6
Leilo Halurai	11,5 - 14,6%	GD 7
	> 14,7%	GD 8

Os segmentos de estradas com rampas menores ou igual a 8% foram classificadas com grau de dificuldade 1 quando com revestimento primário e grau de dificuldade 5 quando com leito natural. Os segmentos entre 8,1 e 11,4% foram definidos com grau de dificuldade 2 em estradas com revestimento primário e 6 em estradas com leito natural. Os segmentos entre 11,5 e 14,6% foram classificados com grau de dificuldade 3 quando em estradas com revestimento primário e grau 7 quanto em estradas com leito natural, e os segmentos acima de 14,7% quando em estradas com revestimento primário foram classificados com grau 4 e como grau 8 quando em estradas com leito natural.

5.1.1.3 Regra de transporte

De acordo com as rampas máximas vencidas por cada CVC foi definida a regra de transporte para os projetos avaliados no cenário I, conforme demonstrado na Tabela 20, onde o Tritrem e o Rodotrem conseguem trafegar nos graus de dificuldade 1, 2 e 5, e o Bitrem e o Romeu e Julieta conseguem trafegar no graus 1, 2, 3, 5 e 6. Nos demais graus de dificuldade, para que a madeira seja transportada deverá haver adequação das estradas ou ser realizada a operação de baldeio.

TABELA 20: REGRA DE TRANSPORTE PARA AS CVC NO CENÁRIO I

CD		CV	C	
GD	Tritrem	Rodotrem	Bitrem	Romeu e Julieta
GD 1	Χ	Χ	Х	Χ
GD 2	X	X	X	X
GD 3			X	X
GD 4				
GD 5	Χ	X	X	X
GD 6			X	X
GD 7				
GD 8				

5.1.1.4 Quantificação de estradas e volumes de madeira por grau de dificuldade

O cenário I apresentou 86,6% das estradas nos graus de dificuldade entre 5 e 8, conforme a Tabela 21, demonstrando que a área avaliada tem predominância de estradas com leito natural. Considerando-se a variável rampa, em 71,1% das estradas não há restrição para o tráfego das CVC; 10,7% das estradas encontram-se com mais de 14,7% de inclinação conforme a soma dos graus 4 e 8 o que exige adequação de estradas ou remoção da madeira com baldeio, e 28,9% do total das estradas apresentam restrição de rampa para o tráfego com Tritrem e Rodotrem.

TABELA 21: QU	ANTIFICAÇÃO DAS	S ESTRADAS	POR GRAU	DE DIFICULI	DADE PARA	١O
CENÁRIO I	-					
Davista	Qua	antidades de	estradas (m	1)		

Droioto	Quantidades de estradas (m)									
Projeto	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total	%
JGA	2.055	435	130	1.610	18.698	1.385	1.985	4.187	30.485	42%
AVI	500	-	-	-	3.815	2.690	250	-	7.255	10%
MIR	250	-	-	-	5.830	2.520	1.460	90	10.150	14%
CIR	-	-	-	-	8.080	960	750	990	10.780	15%
DSN	4.400	180	-	70	7.000	1.015	-	775	13.440	19%
Total	7.205	615	130	1.680	43.423	8.570	4.445	6.042	72.110	100%
%	10,0%	0,9%	0,2%	2,3%	60,2%	11,9%	6,2%	8,4%		

Com relação aos volumes, 68,3% da madeira não apresentou restrição significativa ao transporte para qualquer CVC, estando concentrada nos graus de dificuldade 1 e 5, e 9,3% da madeira ficou concentrada nos graus 4 e 8 onde nenhuma composição consegue trafegar. Nos graus 2, 3, 6 e 7, que apresentam restrições ao trafego, ficou concentrado 22,5% do volume de madeira conforme a Tabela 22 a seguir.

TABELA 22: QUANTIFICAÇÃO DOS VOLUMES DE MADEIRA POR GRAU DE DIFICULDADE PARA O CENÁRIO I

Droioto					Volu	mes (t)				
Projeto	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total	%
JGA	6.416	1.971	1.602	4.327	69.699	4.769	12.394	14.819	115.997	35%
AVI	685	-	-	-	12.909	6.261	685	ı	20.540	6%
MIR	1.344	-	-	-	28.405	12.474	16.621	553	59.397	18%
CIR	-	-	-	-	17.144	485	7.625	2.544	27.798	8%
DSN	36.113	2.096	-	1.127	51.760	6.870	-	6.941	104.907	32%
Total	44.558	4.067	1.602	5.454	179.917	30.859	37.325	24.857	328.639	100%
%	13,6%	1,2%	0,5%	1,7%	54,7%	9,4%	11,4%	7,6%		

5.1.1.5 Estimativa do custo de frete

Para uma distância média de transporte de 50,2 km, no cenário I o custo estimado de frete do Tritrem foi de R\$ 11,01 / t, para o Rodotrem R\$ 11,20 / t, para o Bitrem 13,46 / t e para o Romeu e Julieta (4 eixos) R\$ 13,29 / t (Tabela 23). O detalhamento das estimativas de custos de frete podem ser verificados no Anexo VI.

Devido a maior capacidade de carga líquida o Tritrem e o Rodotrem, mesmo tendo custos operacionais maiores, apresentam custos unitários (R\$ / t) menores que o Bitrem e o Romeu e Julieta (4 eixos) para uma mesma distância.

TABELA 23: ESTIMATIVA DOS CUSTOS DE FRETE POR CVC PARA O CENÁRIO I

Projeto	Volume	Distância	CVC (R\$ / t)					
Florestal	(t)	(km)	Tritrem	Rodotrem	Bitrem	Romeu e Julieta		
JGA	115.997	35,17	8,67	8,81	10,66	10,52		
AVI	20.540	37,87	9,09	9,24	11,16	11,02		
MIR	59.397	19,35	6,21	6,30	7,71	7,62		
CIR	27.798	43,70	10,00	10,17	12,25	12,09		
DSN	104.907	88,40	16,96	17,27	20,58	20,31		
Média*	328.639	50,19	11,01	11,20	13,46	13,29		

^{*} ponderada pelo volume

Base monetária referente a jun/2010

5.1.1.6 Estimativa dos custos de adequação de estradas dentro dos projetos

A partir do levantamento das operações necessárias para adequação e revestimento primário, os custos para transformar as estradas de maior grau de dificuldade em menor grau de dificuldade foram calculados, liberando assim o transporte com CVC de maior PBTC conforme a regra de transporte para o cenário.

A Tabela 24 exibe os custos padrões, que serviram para todos os projetos, onde os maiores valores encontram-se na transformação de estradas do grau de dificuldade 8 para uma estrada do grau 1, 2 ou 3, sendo necessário redesenho do traçado, abertura e regularização do leito de estrada com saídas de água e compactação, cascalhamento e demais atividades de apoio como o transporte de máquinas.

TABELA 24: CUSTO PADRÃO DE ADEQUAÇÃO DE ESTRADAS DENTRO DOS PROJETOS PARA O CENÁRIO I

Grau de dificuldade	Grau de dificuldade futuro (R\$ / m)							
atual	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8
GD1	2,40							
GD2	3,70	2,40						
GD3	9,20	5,50	2,40					
GD4	58,70	55,00	49,50	2,40				
GD5	28,50				2,40			
GD6	28,50	21,80			5,40	2,40		
GD7	34,00	27,30	21,80		6,40	5,30	2,40	
GD8	83,50	76,90	71,40	21,80	15,50	14,50	13,40	2,40

Base monetária referente a jun/2010

Foi estimado em aproximadamente R\$ 2,40 / m o custo de preparação do trecho, que compreende um patrolamento para dar condições de tráfego das CVC nos projetos, independente da mudança de um grau para o outro.

5.1.1.7 Estimativa dos custos de adequação da rota

Nos levantamentos de campo realizados nas rotas, não houve nenhum trecho significativo com rampas acentuadas que limitasse o trafego das CVC avaliadas. Porém, foi considerado um custo padrão de R\$ 8.231,00/km de manutenção nos trechos para uma melhoria no revestimento primário com cascalho, distribuído e compactado.

5.1.1.8 Volumes mínimos de segurança de madeira disponíveis em estradas com revestimento primário

Conforme o regime hídrico da região avaliada, foi utilizado uma restrição que exigirá que o modelo de otimização aloque 50% do volume de madeira nos graus 1, 2, 3 ou 4 que são com revestimento primário, ou realize a operação de baldeio que também disponibiliza madeira em estradas revestidas. Desta forma o

volume mínimo de segurança para garantir o transporte de madeira durante todos os dias será de 164.320 t, conforme demonstrado na Tabela 25. Estes volumes foram considerados para todos os cenários avaliados.

TABELA 25: VOLUME MÍNIMO DE MADEIRA PARA SEGURANÇA NO TRANSPORTE

Projeto	Volume do Projeto (t)	Volume mínimo de segurança (t)		
JGA	115.997	57.999		
AVI	20.540	10.270		
MIR	59.397	29.699		
CIR	27.798	13.899		
DSN	104.907	52.454		
Total	328.639	164.320		

5.1.1.9 Volumes máximos de transporte com o Rodotrem (19,80 m)

A partir da demanda total de transporte da empresa avaliada que é de 450.000 t/mês e do volume total disponível nos projetos que é de 328.639 t, que representa 21,9 dias, foi calculado o limite de operação dos 17 Rodotrens de 19,80 m de comprimento. Para uma distância média de transporte de 50,20 km, o limite máximo de transporte com estas CVC é de 43.670 t. Este volume foi distribuído proporcionalmente em todos os projetos e repetido para todos os cenários.

5.1.2 Outputs do Cenário I

Os principais resultados obtidos a partir da resolução do modelo de programação linear para o cenário I foram:

5.1.2.1 Custo total otimizado

Após a otimização do modelo de minimização de custos, os resultados calculados para o cenário I totalizaram R\$ 4,9 milhões, com um custo unitário de R\$ 14,91/t para os projetos avaliados (Tabela 26).

TABELA 26: CUSTO TOTAL OTIMIZADO DO CENÁRIO I

Custo total otimizado	R\$	R\$/t
Adequação de estradas no bloco	379.460	1,15
Adequação da rota	474.991	1,45
Baldeio	427.560	1,30
Transporte	3.618.668	11,01
Total	4.900.679	14,91

Base monetária referente a jun/2010

Os custos unitários de estradas totalizaram R\$ 2,60 / t quando somados às adequações dos projetos e nas rotas, o custo unitário do baldeio foi de R\$ 1,30/t considerando-se sua diluição para o somatório dos volumes dos projetos, e o custo médio do transporte de madeira foi e R\$ 11,01/t.

5.1.2.2 Utilização das CVC

A minimização dos custos foi alcançada através do transporte de 100% da madeira com o Tritrem conforme demonstrado na Tabela 27.

TABELA 27: VOLUME TRANSPORTADO POR CVC NO CENÁRIO I

Drointo	Volume/CVC (t)						
Projeto	Tritrem	Rodotrem	Bitrem	Romeu e Julieta			
JGA	115.997	-	-	-			
AVI	20.540	-	-	-			
MIR	59.397	-	-	-			
CIR	27.798	-	-	-			
DSN	104.907	-	-	-			
Total	328.639	-	-	-			
%	100%	0%	0%	0%			

5.1.2.3 Volumes de madeira baldeada

O modelo garantiu a restrição de volume mínimo de segurança em estradas cascalhadas alocando 165,7 mil t, ou 50,4%, de madeira através da realização de baldeio em 53,6 mil t, e adequando estradas para transportar outras 60.753 t, conforme os resultados apresentados na Tabela 28.

TABELA 28: VOLUMES MÍNIMOS DE SEGURANÇA PÓS ADEQUAÇÃO E BALDEIO PARA O CENÁRIO I

Projeto	Volume de mad	eira nos graus 1 a 4 (t)	Volume	Volume mínimo de segurança no
	Pré-adequação	Pós-adequação	baldeado (t)	revestimento primário (t)
JGA	14.316	31.479	30.847	57.999
AVI	685	685	9.585	10.270
MIR	1.344	30.439	-	30.439
CIR	-	7.625	6.274	13.899
DSN	39.336	46.206	6.941	53.147
Total	55.681	116.434	53.646	165.754
%		35,4%	16,3%	50,4%

No caso do projeto JGA, o volume de madeira do grau de dificuldade 4 que é de 4.327 t está em estrada com revestimento primário, porém também necessitou ser baldeado devido a nenhuma das CVC avaliadas ser capaz de ultrapassar 14,8% de rampa no cenário I.

5.1.2.4 Quantificação de estradas adequadas

O modelo calculou que para a operação possa ocorrer de forma otimizada é necessária a adequação de 9.405 m de estradas, e que seja realizada uma manutenção leve com patrolamento em outros 62.705 m para garantir o acesso das composições até os talhões (Tabela 29).

TABELA 29: QUANTIDADE DE ESTRADAS ADEQUADAS POR GRAU DE DIFICULDADE NO CENÁRIO I

CDAtual	Quantidade de estradas Adequadas m/GD								
GDAtual	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total
GD1	7.205								
GD2	-	615							
GD3	-	130	-						
GD4	-	70	-	1.610					
GD5	-	-	-	-	43.423				_
GD6	-	4.920	-	-	-	3.650			
GD7	-	4.195	-	-	-	-	250		
GD8	-	-	-	-	90	-	-	5.952	_
Total de Manutenção	7.205	615	-	1.610	43.423	3.650	250	5.952	62.705
Total de Adequação	-	9.315	-	-	90	-	-	-	9.405

As maiores quantidades de adequações foram transformar estradas do grau 6 e 7 em estradas do grau 2 permitindo assim o transporte com Tritrem.

5.1.2.5 Custos para garantir o volume mínimo de segurança de madeira disponível em estradas com revestimento primário

Foi simulada a situação onde não se fixou uma meta de volume mínimo de madeira disponível em estradas cascalhadas, e o resultado é apresentado na Tabela 30 a seguir.

TABELA 30: CUSTO TOTAL OTIMIZADO DO CENÁRIO I SEM GARANTIA DE MADEIRA PARA TRANSPORTE EM DIAS DE CHUVA

Custo total otimizado	R\$	R\$/t
Adequação de estradas no bloco	300.393	0,91
Adequação da rota	474.991	1,45
Baldeio	34.486	0,10
Transporte	3.619.290	11,01
Total	4.429.160	13,48

Base monetária referente a jun/2010

Comparando-se com os valores obtidos quando se fixa uma meta de volumes de segurança, há uma diminuição de 10,6% no custo total da madeira,

ocasionados principalmente pela diminuição dos volumes de baldeio e de adequação de estradas conforme a demonstrado na Tabela 31.

TABELA 31: VOLUMES MÍNIMOS DE SEGURANÇA PÓS ADEQUAÇÃO E BALDEIO PARA O CENÁRIO I

	Volumo do mad	eira nos graus 1 a 4 (t)	Volume	Volume mínimo de
		ella 1105 glaus Ta 4 (t)		
Projeto	Drá odogugaão	Dás adoquação	baldeado	segurança no
, l	Pré-adequação	Pós-adequação	(t)	revestimento primário (t)
JGA	14.316	14.316	1	14.316
AVI	685	685	ı	685
MIR	1.344	1.344	-	1.344
CIR	-	-	52	52
DSN	39.336	39.336	ı	39.336
Total	55.681	55.681	52	55.733
%		16,9%	0,01%	17,0%

5.2 CENÁRIO II

No Cenário II foi avaliado o modelo de minimização de custos de transporte de madeira, estradas de uso florestal e baldeio de toras, considerando-se que as CVC irão trafegar com o PBTC legal, conforme definido pela legislação. A potência dos cavalos mecânicos foi similar a utilizada pelas empresas prestadoras de serviço do local do estudo, houve uma máquina de apoio para que as composições conseguissem vencer rampas maiores e não houveram investimentos para melhorias significativas na rota, apenas as manutenções necessárias para o tráfego.

5.2.1 Inputs do Cenário II

Os dados de entrada utilizados para resolução do Cenário II foram:

5.2.1.1 Estimativa dos limites técnicos de rampa de cada CVC

Conforme demonstrado na Tabela 32, para o Cenário II a máxima rampa possível de ser vencida por um Tritrem e um Rodotrem carregado em uma estrada de Leito natural é de 23,4%; para o Bitrem e Romeu e Julieta (4 eixos) este limite foi de 31,5% quando apoiados por um *skidder* com guincho que adiciona uma força de 18.717 kgf. Para as estradas com revestimento primário as rampas máximas aumentam, sendo 26,7% a máxima para Tritrem e Rodotrem e 35,2% para Bitrem e Romeu e Julieta (4 eixos); e no caso das estradas com revestimento definitivo, por não se utilizar o apoio nestes locais, os limites de rampa continuam sendo iguais ao cenário I, ou seja 15,2% para Tritrem e Rodotrem e 20% pra Bitrem e Romeu e Julieta (4 eixos). O detalhamento dos cálculos teóricos pode ser verificado no Anexo III.

TABELA 32: RAMPAS MÁXIMAS VENCIDAS PELAS CVC CARREGADAS NO CENÁRIO II

	Pavimento					
CVC	Leito	Revestimento	Revestimento			
	natural	primário	definitivo			
Tritrem	23,4%	26,7%	15,2%			
Rodotrem	23,4%	26,7%	15,2%			
Bitrem	31,5%	35,2%	20,0%			
Romeu e Julieta	31,5%	35,2%	20,0%			

Estes valores foram calculados conforme a metodologia descrita no item 3.4.7 e os cálculos demonstram ser possível que as CVC partam em rampas íngremes quando aumentada a força de tração, porém a afirmação deve ser comprovada com testes práticos em campo.

5.2.1.2 Parametrização dos graus de dificuldade

Com base no tipo de pavimento e nas rampas máximas vencidas por cada CVC os parâmetros definidos para cada grau de dificuldade no cenário II ficaram conforme demonstrado na Tabela 33.

TABELA 33: PARAMETRIZAÇÃO DOS GRAUS DE DIFICULDADE PARA O CENÁRIO II

Pavimento	Rampa	GD
	<u>≤</u> 23,4 %	GD 1
Povostimento primário	23,5 - 26,7%	GD 2
Revestimento primário	26,8 - 35,2%	GD 3
	> 35,3%	GD 4
	≤ 23,4 %	GD 5
Loito notural	23,5 - 26,7%	GD 6
Leito natural	26,8 - 35,2%	GD 7
	> 35,3%	GD 8

Os segmentos de estradas com rampas menores ou igual a 23,4% foram classificadas com grau de dificuldade 1 quando com revestimento primário e grau de dificuldade 5 quando com leito natural. Os segmentos entre 23,5 e 26,7% foram definidos com grau de dificuldade 2 em estradas com revestimento primário e 6 em estradas com leito natural. Os segmentos entre 26,8 e 35,2% foram classificados com grau de dificuldade 3 quando em estradas com revestimento primário e grau 7 quanto em estradas com leito natural, e os segmentos acima de 35,3% quando em estradas com revestimento primário foram classificados com grau 4 e como grau 8 quando em estradas com leito natural.

5.2.1.3 Regra de transporte

De acordo com as rampas máximas vencidas por cada CVC foi definida a regra de transporte para os projetos avaliados no Cenário II, conforme demonstrado na Tabela 34, onde o Tritrem e o Rodotrem conseguem trafegar nos graus de dificuldade 1, 2 e 5, e o Bitrem e o Romeu e Julieta conseguem trafegar

no graus 1, 2, 3, 5, 6 e 7. Nos demais graus de dificuldade, para que a madeira seja transportada deverá haver adequação das estrada ou ser realizada a operação de baldeio.

TABELA 34: REGRA DE TRANSPORTE PARA AS CVC NO CENÁRIO II

GD	CVC							
GD	Tritrem Rodotrem		Bitrem	Romeu e Julieta				
GD 1	X	X	X	X				
GD 2	X	X	X	X				
GD 3			X	X				
GD 4								
GD 5	X	X	X	X				
GD 6			X	X				
GD 7			X	X				
GD 8			_					

5.2.1.4 Quantificação de estradas e volumes de madeira por grau de dificuldade

O cenário II apresentou 86,7% das estradas entre os graus de dificuldade 5 e 8, conforme a Tabela 35, demonstrando que a área avaliada tem predominância de estradas com leito natural. Considerando-se a variável rampa, em 96% das estradas não há restrição para o tráfego de qualquer CVC desde que com o apoio do skidder, 0,7% das estradas encontram-se com mais de 35,3% de inclinação conforme a soma dos graus 4 e 8 o que exige adequação ou remoção da madeira com baldeio, e 4% do total das estradas apresentam restrição de rampa para o tráfego com Tritrem e Rodotrem.

TABELA 35: QUANTIFICAÇÃO DAS ESTRADAS POR GRAU DE DIFICULDADE PARA O CENÁRIO II

Drointo				Qua	ntidades	de estra	das (m)			
Projeto	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total	%
JGA	3.630		470	130	24.408	765	747	335	30.485	42%
AVI	500	-	-	-	6.755	-	-	-	7.255	10%
MIR	250	-	-	-	9.810	-	90	-	10.150	14%
CIR	-	-	-	-	10.430	260	90	-	10.780	15%
DSN	4.650	-	-	-	8.790	-	-	-	13.440	19%
Total	9.030	-	470	130	60.193	1.025	927	335	72.110	100%
%	12,5%	0,0%	0,7%	0,2%	83,5%	1,4%	1,3%	0,5%		

Com relação aos volumes, 96,6% da madeira não apresentou restrição significativa ao transporte para qualquer CVC, estando concentrada nos graus de dificuldade 1 e 5, e 0,4% da madeira ficou concentrada nos graus 4 e 8 onde nenhuma composição consegue trafegar. Nos graus 2, 3, 6 e 7, que apresentam restrições ao trafego, ficou concentrado 3% do volume de madeira conforme a Tabela 36 a seguir.

TABELA 36: QUANTIFICAÇÃO DOS VOLUMES DE MADEIRA POR GRAU DE DIFICULDADE PARA O CENÁRIO II

Projeto		Volumes (t)										
	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total	%		
JGA	12.574	-	1.743	-	93.488	3.053	3.918	1.221	115.997	35%		
AVI	685	•	-	ı	19.855	-	-	ı	20.540	6%		
MIR	1.344	-	-	1	57.500	1	553	-	59.397	18%		
CIR	-	•	-	ı	27.176	570	52	ı	27.798	8%		
DSN	39.336	•	-	ı	65.572	-	-	ı	104.908	32%		
Total	53.939	-	1.743	-	263.591	3.623	4.523	1.221	328.640	100%		
%	16,4%	0,0%	0,5%	0,0%	80,2%	1,1%	1,4%	0,4%				

5.2.1.5 Estimativa do custo de frete e do apoio

Os custos de frete do cenário II são os mesmos calculados para o cenário I, demonstrados na Tabela 23, do item 5.1.1.5 e no Anexo VI. O custo da operação de apoio considerado nos cálculos foi de R\$ 0,82/t incidente sobre todo volume de madeira transportada.

5.2.1.6 Estimativa dos custos de adequação de estradas dentro dos projetos

A Tabela 37 exibe os custos padrões de adequação de estradas dentro dos projetos onde os maiores valores encontram-se na transformação de estradas do grau de dificuldade 8 para uma estrada do grau 1, 2 ou 3, sendo necessário redesenho do traçado, abertura e regularização do leito de estrada com saídas de

água e compactação, cascalhamento e demais atividades de apoio como transporte de máquinas, que para o cenário II podem chegar até a R\$ 56,00 / m.

TABELA 37: CUSTO PADRÃO DE ADEQUAÇÃO DE ESTRADAS DENTRO DOS PROJETOS PARA O CENÁRIO II

Grau de dificuldade	Grau de dificuldade futuro (R\$/m)									
atual	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8		
GD1	2,4									
GD2	3,7	2,4								
GD3	18,3	14,7	2,4							
GD4	31,2	27,5	14,7	2,4						
GD5	28,5				2,4					
GD6	28,5	21,8			5,4	2,4				
GD7	43,1	36,5	21,8		8,1	7,0	2,4			
GD8	56,0	49,3	36,5	21,8	10,4	9,4	7,0	2,4		

Base monetária referente a jun/2010

Foi estimado em aproximadamente R\$ 2,40 / m o custo de preparação do trecho, que compreende um patrolamento para dar condições de tráfego das CVC nos projetos, independente da mudança de um grau para o outro.

Para a rota foi considerado um custo padrão de R\$ 8.231,00/km de manutenção nos trechos para uma melhoria no revestimento primário com cascalho, distribuído e compactado.

5.2.1.7 Restrição de volumes mínimos de segurança e de transporte com o Rodotrem (19,80 m)

Ambas as restrições foram consideradas as mesmas utilizadas para o cenário I, referenciadas nos itens 5.1.1.8 e 5.1.1.9.

5.2.2 Outputs do Cenário II

Os principais resultados obtidos a partir da resolução do modelo de programação linear para o cenário II foram:

5.2.2.1 Custo total otimizado

Após a otimização do modelo de minimização de custos, os resultados calculados para o Cenário II totalizaram R\$ 5,41 milhões, com um custo unitário de R\$ 16,39/t para os projetos avaliados, conforme a Tabela 38.

TABELA 38: CUSTO TOTAL OTIMIZADO DO CENÁRIO II

Custo total otimizado	R\$	R\$/t
Adequação de estradas no bloco	205.306	0,62
Adequação da rota	474.991	1,45
Baldeio	805.876	2,45
Apoio	269.484	0,82
Transporte	3.631.046	11,05
Total	5.386.703	16,39

Base monetária referente a jun/2010

Os custos unitários de estradas totalizaram R\$ 2,07 / t quando somados as adequações dos projetos e das rotas, o custo unitário do baldeio foi de R\$ 2,45 / t considerando-se sua diluição para o somatório dos volumes dos projetos, o custo do apoio foi de R\$ 0,82/t e o custo médio do transporte de madeira foi de R\$ 11,05 / t.

Quando comparado com o cenário I, o cenário II apresentou um custo de R\$ 486 mil ou 10% a mais, resultado do aumento de R\$ 269 mil do apoio, R\$ 378 mil com baldeio e R\$ 12,3 mil com transporte, contra um redução de R\$ 174 mil na adequação das estradas dentro dos projetos. Unitariamente este aumento foi de R\$ 1,48 / t, mostrando que a inserção da operação de apoio com um custo de R\$

0,82 / t aumenta o custo final pela opção em gastar mais com baldeio ao invés de investir em adequação de estradas dentro dos projetos.

5.2.2.2 Utilização das CVC

A minimização dos custos foi alcançada através do transporte de 98,1% da madeira com o Tritrem e 1,9% da madeira com o Romeu e Julieta (4 eixos) conforme demonstrado na Tabela 39.

TABELA 39: VOLUME TRANSPORTADO POR CVC NO CENÁRIO II

TABLEA 33. VOLGINIE TRANSI ORTABO I OR OVO NO CENARIO II								
Droioto	Volume/CVC (t)							
Projeto	Tritrem	Rodotrem	Bitrem	Romeu e Julieta				
JGA	110.336	-	-	5.661				
AVI	20.540	-	-	-				
MIR	58.844	-	-	553				
CIR	27.798	-	-	-				
DSN	104.908	-	-	-				
Total	322.426	-	-	6.214				
%	98,1%	0%	0%	1,9%				

5.2.2.3 Volumes de madeira baldeada

O modelo garantiu a restrição de volume mínimo de segurança em estradas com revestimento primário alocando 164,3 mil t, ou 50 %, de madeira através da realização de baldeio em 101,1 mil t, e adequando estradas para transportar outras 63,2 mil t, conforme os resultados apresentados na Tabela 40.

TABELA 40: VOLUMES MÍNIMOS DE SEGURANÇA PÓS ADEQUAÇÃO E BALDEIO PARA O CENÁRIO II

	Volume de madeira nos	graus 1 a 4 (t)		Volume mínimo		
Projeto	Pré-adequação	Pós- adequação	Volume baldeado (t)	de segurança no revestimento primário (t)		
JGA	14.317	21.288	36.711	57.999		
AVI	685	685	9.585	10.270		
MIR	1.344	1.897	27.802	29.699		
CIR	-	-	13.899	13.899		
DSN	39.336	39.336	13.118	52.454		
Total	55.682	63.206	101.114	164.320		
%		19,2%	30,8%	50,0%		

5.2.2.4 Quantificação de estradas adequadas

O modelo calculou que para a operação possa ocorrer de forma otimizada é necessário a adequação de 1.602 m de estradas, e que seja realizada uma manutenção leve com patrolamento em outros 70.508 m de estradas para garantir o acesso das composições até os talhões conforme demonstrado na Tabela 41.

TABELA 41: QUANTIDADE DE ESTRADAS ADEQUADAS POR GRAU DE DIFICULDADE NO CENÁRIO II

CDAtual	Quantidade de estradas Adequadas m/GD									
GDAtual	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total	
GD1	9.030									
GD2	-	ı								
GD3	-	-	470							
GD4	-	-	-	130						
GD5	-	-	-	-	60.193					
GD6	-	765	-	-	-	260				
GD7	-	-	837	-	-	-	90			
GD8	-	ı	-	ı	-	-	-	335		
Total de Manutenção	9.030	ı	470	130	60.193	260	90	335	70.508	
Total de Adequação	-	765	837	-	-	-	-	-	1.602	

As maiores quantidades de adequações foram em transformar estradas do grau 6 em estradas do grau 2 permitindo o transporte com Tritrem e estradas do grau 7 em grau 3 permitindo o transporte com Romeu e Julieta (4 eixos).

5.3 CENÁRIO III

No cenário III foi avaliado o modelo de minimização de custos de transporte de madeira, estradas de uso florestal e baldeio de toras, considerandose que as CVC irão trafegar com o PBTC legal, conforme definido pela legislação, a potência dos cavalos mecânicos foi similar a utilizada pelas empresas prestadoras de serviço do local do estudo, não houve uma máquina de apoio para que as composições consigam vencer rampas maiores e houveram investimentos para melhorias nas rotas e redução do IRI, com o objetivo de se aumentar a velocidade média das CVC e diminuir o consumo de combustível, o custo de manutenção e os gastos com pneus.

5.3.1 Inputs do Cenário III

Os *Inputs* do cenário III referentes a limites técnicos de rampa, parametrização dos graus de dificuldade, regra de transporte, volumes, quantificação de estradas e volumes de madeira por grau de dificuldade, estimativa dos custos de adequação de estradas dentro dos projetos, volumes mínimos de segurança de madeira disponíveis em estradas com revestimento primário e volumes máximos de transporte com o rodotrem, são os mesmos do cenário I e que constam no item 5.1.1.

5.3.1.1 Estimativa dos custos de adequação da rota

Nos levantamentos de campo realizados nas rotas, não houve nenhum trecho significativo com rampas acentuadas que limitasse o trafego das CVC avaliadas.

Para se avaliar o impacto no modelo de uma melhoria significativa no pavimento das rotas de acesso aos projetos, diminuindo a irregularidade conforme

o conceito do IRI na Tabela 04, foi adicionado um custo de R\$ 32.882,34/km para escarificação e revestimento com cascalho fino britado, distribuído e compactado.

5.3.1.2 Estimativa dos custos de frete

A partir da melhoria das condições das estradas foi projetado, com base da experiência técnica da área de transportes da empresa avaliada, um aumento da velocidade das CVC em 10% nos trechos de estradas primárias e secundárias, um aumento da vida útil dos pneus em 10%, e reduzido o custo médio de manutenção dos caminhões em 5%. As premissas utilizadas e os cálculos podem ser encontrados no Anexo VI.

Para uma distância média de 50,2 km, no cenário III o custo estimado de frete do Tritrem foi de R\$ 10,83 / tpara o Rodotrem R\$ 11,02 / t, para o Bitrem 13,26 / t e para o Romeu e Julieta (4 eixos) R\$ 13,08 / t (Tabela 42).

TABELA 42: CUSTO ESTIMADO DO FRETE PARA O CENÁRIO III

17,000	TABLE (42: 00010 COTIVIADO DO FACILIZA TARA CONTRA						
Projeto	Volume	Distância		CVC (R\$/t)			
Florestal	(t)	Km	Tritrem	Rodotrem	Bitrem	Romeu e Julieta	
JGA	115.997	35,17	8,55	8,69	10,52	10,38	
AVI	20.540	37,87	8,96	9,10	11,01	10,87	
MIR	59.397	19,35	6,14	6,23	7,64	7,54	
CIR	27.798	43,70	9,84	10,01	12,08	11,92	
DSN	104.907	88,40	16,64	16,96	20,23	19,95	
Média*	328.639	50,20	10,83	11,02	13,26	13,08	

^{*} ponderada pelo volume - Base monetária referente a jun/2010

Quando comparados com os custos de frete do cenário I, as melhorias nas estradas refletiram em um redução no frete de aproximadamente 1,6 % para o Tritrem e Rodotrem e 1,47% para o Bitrem e 1,52% para o Romeu e Julieta (4 eixos).

5.3.2 Outputs do Cenário III

Os principais resultados obtidos a partir da resolução do modelo de programação linear para o cenário I foram:

5.3.2.1 Custo total otimizado

Após a otimização do modelo de minimização de custos, os resultados calculados para o Cenário III totalizaram R\$ 6,26 milhões, com um custo unitário de R\$ 19,05 / t para os projetos avaliados (Tabela 43).

TABELA 43: CUSTO TOTAL OTIMIZADO DO CENÁRIO III

Custo total otimizado	R\$	R\$/t
Adequação de estradas no bloco	379.460	1,15
Adequação da rota	1.893.960	5,76
Baldeio	427.560	1,30
Transporte	3.559.874	10,83
Total	6.260.854	19,05

Base monetária referente a jun/2010

Os custos unitários de estradas totalizaram R\$ 6,91 / t quando somado as adequações dos projetos e nas rotas. O custo unitário do baldeio foi de R\$ 1,30 / t considerando-se sua diluição para o somatório dos volumes dos projetos, e o custo médio do transporte de madeira foi de R\$ 10,83 / t.

Comparando-se os resultados do cenário III com o cenário I, pode-se verificar que investimentos para melhoria substancial na qualidade do IRI não refletiram em redução de custos totais para os volumes avaliados

Considerando-se que o custo médio do frete do cenário III é de R\$ 10,83/t, ou R\$ 0,18/t a menos que no cenário I, pode-se estimar que caso o volume de madeira que passe nas estradas das rotas sejam superiores a 1.163.482 t o cenário III terá custo total otimizado menor.

Não houve alterações em relação aos resultados do cenário I para a escolha das CVC que realizam o transporte, para os volumes de madeira baldeada e para as quantidades de estradas adequadas dentro dos projetos.

5.4 CENÁRIO IV

No Cenário IV foi avaliado o modelo de minimização de custos de transporte de madeira, estradas de uso florestal e baldeio de toras, considerandose que as CVC irão trafegar com o PBTC legal, conforme definido pela legislação, a potência dos cavalos mecânicos será aumentada em relação à utilizada pelas empresas prestadoras de serviço do local do estudo, não haverá apoio para as composições, e não haverão investimentos para melhorias significativas na rota, apenas as manutenções necessárias para o tráfego.

5.4.1 *Inputs* do Cenário IV

Os dados de entrada utilizados para resolução do Cenário IV foram:

5.4.1.1 Estimativa dos limites técnicos de rampa de cada CVC

Conforme demonstrado na Tabela 44, para o Cenário IV a máxima rampa possível de ser vencida por um Tritrem e um Rodotrem carregado em uma estrada com leito natural é de 8,0%; para o Bitrem e Romeu e Julieta (4 eixos) este limite é de 11,4%. Para estradas com revestimento primário e revestimento definitivo as rampas máximas aumentam, sendo 10,8% a máxima para Tritrem e Rodotrem e 14,6% para Bitrem e Romeu e Julieta (4 eixos); e 15,2% e 20% respectivamente. O detalhamento dos cálculos pode ser verificado no Anexo III.

,		,
	VENCIDAS PELAS CVC CARREGADAS NO	

	Pavimento				
CVC	Leito	Revestimento	Revestimento		
	natural	Primário	definitivo		
Tritrem	8,0%	10,8%	15,2%		
Rodotrem	8,0%	10,8%	15,2%		
Bitrem	11,4%	14,6%	20,0%		
Romeu e Julieta	11,4%	14,6%	20,0%		

Os cálculos demonstraram que não existem ganhos em rampas pelo aumento da potência e torque dos cavalos mecânicos caso se utilize o peso legal. Este ganho somente será efetivado se as CVC puderem trafegar com mais peso sobre os eixos de tração, o que irá aumentar força disponível na roda (FR) ou a força de aderência (Fad).

Os *Inputs* do cenário IV referentes à parametrização dos graus de dificuldade, regra de transporte, volumes, quantificação de estradas e volumes de madeira por grau de dificuldade, estimativa dos custos de adequação de estradas dentro dos projetos, volumes mínimos de segurança de madeira disponíveis em estradas com revestimento primário e volumes máximos de transporte com o Rodotrem (19,80 m), são os mesmos do cenário I e que constam no item 5.1.1.

5.4.1.2 Estimativa do custo de frete

O valor de aquisição do cavalo mecânico foi acrescido de R\$ 30 mil em relação aos demais cenários e a partir do ganho de potência projetou-se um ganho de 5% na velocidade médias das CVC.

A partir da metodologia proposta por ASABE (2005) descrita no item 3.4.7.9 calculou-se um aumento de 8,9% no consumo de combustível em função do aumento de potência.

Como resultado para uma distância média de 50,2 km, no Cenário IV o custo estimado de frete do Tritrem foi de R\$ 11,35 / t, para o Rodotrem R\$ 11,55 / t, para o Bitrem 13,90 / t e para o Romeu e Julieta (4 eixos) R\$ 13,73 / t, conforme demonstrado na Tabela 45. O detalhamento das estimativas de custos de frete podem ser visto no Anexo VI.

				,
TARFI A 45. FSTIMATIVA			$\sim \sim \sim \sim$	
TABELA 45 ESTIMATIVA	コンしろ しいろしいろ	DE ERETE POR	L.VIL PARA U	I LENARIU IV

Projeto	Volume	Distância		CV	C (R\$/t)	
Florestal	(t)	km	Tritrem	Rodotrem	Bitrem	Romeu e Julieta
JGA	115.997	35,17	8,94	9,08	11,00	10,86
AVI	20.540	37,87	9,37	9,53	11,52	11,38
MIR	59.397	19,35	6,39	6,48	7,94	7,85
CIR	27.798	43,70	10,31	10,49	12,64	12,49
DSN	104.907	88,40	17,51	17,84	21,28	21,01
Média*	328.639	50,19	11,35	11,55	13,90	13,73

^{*} ponderada pelo volume

Quando comparado com o cenário I, os custos de frete do cenário IV aumentaram em média R\$ 0,35 / t para o Tritrem e Rodotrem e R\$ 0,39 / t para o Bitrem e Romeu e Julieta.

5.4.2 Outputs do Cenário IV

Os principais resultados obtidos a partir da resolução do modelo de programação linear para o cenário IV foram:

5.4.2.1 Custo total otimizado

Após a otimização do modelo de minimização de custos, os resultados calculados para o Cenário IV totalizaram R\$ 5,01 milhões, com um custo unitário de R\$ 15,26 / t para os projetos avaliados, conforme a Tabela 46.

TABELA 46: CUSTO TOTAL OTIMIZADO DO CENÁRIO IV

TABLEA 40. 00010 TOTAL OTHINIZADO DO CENARIO IV		
Custo total otimizado	R\$	R\$/t
Adequação de estradas no bloco	379.460	1,15
Adequação da rota	474.991	1,45
Baldeio	427.560	1,30
Transporte	3.731.520	11,35
Total	5.013.531	15,26

Base monetária referente a jun/2010

Os custos unitários de estradas totalizaram R\$ 2,70 / t quando somados as adequações dos projetos e nas rotas, o custo unitário do baldeio foi de R\$ 1,30 / t considerando-se sua diluição para o somatório dos volumes dos projetos, e o custo médio do transporte de madeira foi e R\$ 11,35 / t.

Não houve alterações em relação aos resultados do cenário I para a escolha das CVC que realizam o transporte nos projetos, para os volumes de madeira baldeada e para as quantidades de estradas adequadas dentro dos projetos.

Quando comparado com o cenário I, praticamente não houve uma variação significativa nos custos otimizados, concluindo-se que conforme as premissas adotadas para o local de estudo, o aumento da potência dos cavalos mecânicos em 80 hp ou do torque em 40 kgfm não reduziram os custos de transporte de madeira.

5.5 CENÁRIO V

No Cenário V foi avaliado o modelo de minimização de custos de transporte de madeira, estradas de uso florestal e baldeio de toras, considerando-se que as CVC iriam trafegar com o PBT conforme definido pela legislação, porém com uma concentração de peso sobre os eixos de tração, a potência dos cavalos foi similar a utilizada pelas empresas prestadoras de serviço do local do estudo, houve uma máquina de apoio para que as composições consigam vencer rampas maiores e não houveram investimentos para melhorias significativas na rota, apenas as manutenções necessárias para o tráfego.

5.5.1 Inputs do Cenário V

Os dados de entrada utilizados para resolução do Cenário V foram:

5.5.1.1 Estimativa dos limites técnicos de rampa de cada CVC

Foi utilizado um peso técnico de 26 t sobre os eixos de tração do Tritrem, Bitrem, Rodotrem e Romeu e Julieta (4 eixos), contra 17 t permitido em todos os casos e aumentado em 18.717 kgf a força de tração com o apoio de um *skidder* com guincho.

Conforme demonstrado na Tabela 47, para o Cenário V a máxima rampa calculada possível de ser vencida por um Tritrem carregado em uma estrada com leito natural é de 26,2%; para o Rodotrem este limite é de 25,7%, para o Bitrem 35,1% e para o Romeu e Julieta (4 eixos) 40,2%. Para estradas com revestimento primário as rampas máximas para Tritrem são 29,7%, para o Rodotrem 29,2%, para o Bitrem 39,1% e para o Romeu e Julieta (4 eixos) 44,8%. Em relação às estradas com revestimento definitivo as rampas máximas para Tritrem são 18,9%, para o Rodotrem 18,4%, para o Bitrem 24,8% e para o Romeu e Julieta (4 eixos) 32,2%. O detalhamento dos cálculos pode ser verificado no Anexo III.

TABELA 47: RAMPAS MÁXIMAS VENCIDAS PELAS CVC CARREGADAS COM PESO TÉCNICO SOBRE OS EIXOS DE TRACÃO, MAIS *SKIDDER* DE APOIO NO CENÁRIO V

TECNICO SOBRE OS EIXOS DE TRAÇÃO, MAIS SKIDDEN DE APOIO NO CENARIO V					
	Pavimento				
CVC	Leito	Revestimento	Revestimento		
	natural	primário	definitivo		
Tritrem	26,2%	29,7%	18,9%		
Rodotrem	25,7%	29,2%	18,4%		
Bitrem	35,1%	39,1%	24,8%		
Romeu e Julieta	40,2%	44,8%	32,2%		

Caso se retire a força adicionada pelo *skidder* no apoio dos caminhões os resultados de rampas máximas para as CVC são as apresentadas na Tabela 48, onde o Tritrem consegue partir com até 10,8% carregado com o PBT em pavimentos com leito natural, o Rodotrem 10,3%, o Bitrem 15,0% e o Romeu e Julieta 20,1%. Quando o pavimento é com revestimento primário o Tritrem consegue vencer rampas de até 13,9%, o Rodotrem até 13,4%, o Bitrem 18,6% e o Romeu e Julieta (4 eixos) até 24,2%. Já em asfalto (revestimento definitivo) o

Tritrem consegue vencer até 19,1%, o Rodotrem 18,4% o Bitrem 25,0% e o Romeu e Julieta (4 eixos) 32,2%.

TABELA 48: RAMPAS MÁXIMAS VENCIDAS PELAS CVC CARREGADAS COM PESO

TÉCNICO SOBRE O EIXO DE TRAÇÃO NO CENÁRIO V

I LOTTIOG GODINE O LING DE	110 tg/10 110 0E11/111	<u> </u>				
		Pavimento				
CVC	Leito	Revestimento	Revestimento			
	natural	primário	definitivo			
Tritrem	10,8%	13,9%	19,1%			
Rodotrem	10,3%	13,4%	18,4%			
Bitrem	15,0%	18,6%	25,0%			
Romeu e Julieta	20,1%	24,2%	32,2%			

Quando isoladas e comparadas as diferenças em rampa utilizando-se o peso técnico sobre o peso legal, os ganhos percentuais em rampas são entre 21,2 e 35,3% para Tritrem, Rodotrem e Bitrem e de até 76,2% para o Romeu e Julieta (4 eixos) conforme demonstrado na Tabela 49.

TABELA 49: GANHOS PERCENTUAIS EM RAMPA DO PESO TÉCNICO EM RELAÇÃO AO

PESO LEGAL

	Pavimento				
CVC	Leito	Revestimento	Revestimento		
	natural	primário	definitivo		
Tritrem	35,3%	28,1%	25,5%		
Rodotrem	29,0%	23,3%	21,2%		
Bitrem	31,5%	27,1%	25,2%		
Romeu e Julieta	76,2%	65,8%	61,2%		

Estes valores foram calculados conforme a metodologia descrita, e quando comparados com o referencial teórico, descrito no item 3.4.7.7, percebe-se que é possível que as CVC partam em rampas íngremes quando estiverem com mais peso sobre os eixos de tração, porém a afirmação deve ser comprovada com testes práticos em campo.

5.5.1.2 Parametrização dos graus de dificuldade

Com base no tipo de pavimento e nas rampas máximas vencidas por cada CVC os parâmetros definidos para cada grau de dificuldade no Cenário V ficaram conforme demonstrado na Tabela 50.

TABELA 50: PARAMETRIZAÇÃO DOS GRAUS DE DIFICULDADE PARA O CENÁRIO V

TABLET OC. I THE WILL THE TOP BOOK OF THE BETTING OF THE TABLET THE TOP BETTING TO				
Pavimento	Rampa	GD		
	≤ 25,7 %	GD 1		
Dovostimente primário	25,8 - 29,7%	GD 2		
Revestimento primário	29,8 - 35,1%	GD 3		
	> 35,2 %	GD 4		
	≤ 25,7 %	GD 5		
Loite natural	25,8 - 29,7%	GD 6		
Leito natural	29,8 - 35,1%	GD 7		
	> 35,2 %	GD 8		

Os segmentos de estradas com rampas menores ou igual a 25,7% foram classificadas com grau de dificuldade 1 quando com revestimento primário e grau de dificuldade 5 quando com leito natural. Os segmentos entre 25,8 e 29,7% foram definidos com grau de dificuldade 2 em estradas com revestimento primário e 6 em estradas com leito natural. Os segmentos entre 29,8 e 35,1% foram classificados com grau de dificuldade 3 quando em estradas com revestimento primário e grau 7 quando em estradas com leito natural, e os segmentos acima de 35,2% quando em estradas com revestimento primário foram classificados com grau 4 e como grau 8 quando em estradas com leito natural.

5.5.1.3 Regra de transporte

A regra de transporte para os projetos avaliados no Cenário V foi definida conforme demonstrado na Tabela 51, onde o Tritrem e o Rodotrem conseguem trafegar nos graus de dificuldade 1, 2 e 5, o Bitrem consegue trafegar no graus 1,

2, 3, 5 e 6 e o Romeu e Julieta (4 eixos) nos graus de 1 a 8. Neste cenário não necessariamente é preciso fazer o baldeio pois o Romeu e Julieta com peso técnico no eixo de tração e com uma máquina de apoio, tem condições de realizar o transporte em 100% das áreas.

TABELA 51: REGRA DE TRANSPORTE PARA AS CVC NO CENÁRIO V

., ., ., .							
0.0	CVC						
GD	Tritrem	Rodotrem	Bitrem	Romeu e Julieta			
GD 1	X	X	Х	X			
GD 2	X	X	X	X			
GD 3			Х	X			
GD 4				X			
GD 5	X	X	Х	X			
GD 6			X	X			
GD 7			X	X			
GD 8				X			

5.5.1.4 Quantificação de estradas e volumes de madeira por grau de dificuldade

O Cenário V apresentou 86,7% das estradas nos graus de dificuldade entre 5 e 8, conforme a Tabela 52, demonstrando que a área avaliada tem predominância de estradas de terra. Considerando-se a variável rampa, em 97,7% das estradas não há restrição para o tráfego de qualquer uma das CVC desde que com apoio do s*kidder*; e 2,3% do total das estradas apresentam restrição de rampa para o tráfego com Tritrem e Rodotrem.

TABELA 52: QUANTIFICAÇÃO DAS ESTRADAS POR GRAU DE DIFICULDADE PARA O CENÁRIO V

-										
Drointo				Qua	ntidades	de estra	das (m)			
Projeto	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total	%
JGA	3.630	255	265	80	25.118	315	452	370	30.485	42%
AVI	500	-	-	-	6.755	-	-	-	7.255	10%
MIR	250	-	-	-	9.810	90	-	-	10.150	14%
CIR	-	-	-	-	10.690	-	90	-	10.780	15%
DSN	4.650	-	-	-	8.790	-	-	-	13.440	19%
Total	9.030	255	265	80	61.163	405	542	370	72.110	100%
%	12,5%	0,4%	0,4%	0,1%	84,8%	0,6%	0,8%	0,5%		

Com relação aos volumes, 97,9% da madeira não apresentaram restrição significativa ao transporte para qualquer CVC, estando concentrada nos graus de dificuldade 1, 2 e 5. Nos graus 3, 4, 6, 7 e 8, que apresentam restrições ao trafego, ficaram concentrados 2,1% do volume de madeira conforma a Tabela 53 a seguir.

TABELA 53: QUANTIFICAÇÃO DOS VOLUMES DE MADEIRA POR GRAU DE DIFICULDADE PARA O CENÁRIO V

Projeto					Volu	mes (t)				
Fiojeto	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total	%
JGA	12.574	1.056	686	ı	96.187	934	3.114	1.447	115.998	35%
AVI	685	-	1	-	19.855	1	-	-	20.540	6%
MIR	1.344	-	ı	ı	57.500	553	-	-	59.397	18%
CIR	-	-	ı	ı	27.746	-	52	ı	27.798	8%
DSN	39.336	-	-	-	65.572	-	-	-	104.908	32%
Total	53.939	1.056	686	ı	266.860	1.487	3.166	1.447	328.641	100%
%	16,4%	0,3%	0,2%	0,0%	81,2%	0,5%	1,0%	0,4%		

5.5.1.5 Estimativa do custo de frete e do apoio

Os custos de frete do cenário V são os mesmos calculados para o cenário I, demonstrados na Tabela 25, do item 5.1.1.5 e no Anexo V. O custo da operação de apoio considerado nos cálculos foi de R\$ 0,82 / t incidente sobre todo volume de madeira transportada.

5.5.1.6 Estimativa dos custos de adequação de estradas dentro dos projetos

A Tabela 54 exibe os custos padrões, que serviram para todos os projetos, onde os maiores valores encontram-se na transformação de estradas do grau de dificuldade 8 para uma estrada do grau 1, 2 ou 3, sendo necessário redesenho do traçado, abertura e regularização do leito de estrada com saídas de água e compactação, cascalhamento e demais atividades de apoio como transporte de máquinas, que para o cenário V podem chegar até a R\$ 50,60 / m.

TABELA 54: CUSTO PADRÃO DE ADEQUAÇÃO DE ESTRADAS PARA O CENÁRIO V Grau de Grau de dificuldade futuro (R\$/m) dificuldade GD1 GD2 GD3 GD4 GD5 GD6 GD7 GD8 atual 2,4 GD1 3,7 GD2 2,4 GD3 2,4 12,8 9,2 GD4 25,7 22,0 2,4 14,7 GD5 28,5 2,4 GD6 28,5 21,8 5,4 2,4 GD7 37,6 31,0 21,8 7,1 6,0 2,4

21,8

9,4

8,4

7,0

2,4

Base monetária referente a jun/2010

43,8

36,5

50,5

GD8

Foi estimado em aproximadamente R\$ 2,40 / m o custo de preparação do trecho, que compreende um patrolamento para dar condições de tráfego das CVC nos projetos, independente da mudança de um grau para o outro.

Para a rota foi considerado um custo padrão de R\$ 8.231,00/km de manutenção nos trechos para uma melhoria no revestimento primário com cascalho, distribuído e compactado.

5.5.1.7 Restrição de volumes mínimos de segurança e de transporte com o Rodotrem (19,80 m)

Ambas as restrições foram consideradas as mesmas utilizadas para o cenário I, referenciadas nos itens 5.1.1.8 e 5.1.1.9.

5.5.2 Outputs do Cenário V

Os principais resultados obtidos a partir da resolução do modelo de programação linear para o cenário V foram:

5.5.2.1 Custo total otimizado

Após a otimização do modelo de minimização de custos, os resultados calculados para o Cenário V totalizaram R\$ 5,38 milhões, com um custo unitário de R\$ 16,40/t para os projetos avaliados, conforme a Tabela 55.

TABELA 55: CUSTO TOTAL OTIMIZADO DO CENÁRIO V

Custo total otimizado	R\$	R\$/t
Adequação de estradas no bloco	194.996	0,59
Adequação da rota	474.991	1,45
Baldeio	829.185	2,52
Apoio	269.484	0,82
Transporte	3.619.965	11,02
Total	5.388.621	16,40

Base monetária referente a jun/2010

Os custos unitários de estradas totalizaram R\$ 2,04/t quando somados as adequações dos projetos e nas rotas, o custo unitário do baldeio foi de R\$ 2,52/t considerando-se sua diluição para o somatório dos volumes dos projetos, o custo do apoio foi de R\$ 0,82/t e o custo médio do transporte de madeira foi e R\$ 11,02/t.

Quando comparado com o cenário I, o cenário V apresentou um custo de R\$ 488 mil ou 9,9% a mais, resultado do aumento de R\$ 269 mil do apoio mais R\$ 401 mil com baldeio, contra um redução de R\$ 184 mil na adequação das estradas dentro dos projetos. Unitariamente este aumento foi de R\$ 1,49/t, mostrando que a inserção da operação de apoio com um custo de R\$ 0,82/t aumenta mais o custo final pela opção em gastar mais com baldeio, ao invés de investir em adequação de estradas dentro dos projetos devido a restrição de chuva.

A opção de se usar o peso técnico sobre os eixos de tração das composições não demonstrou agregar resultado quando a operação é realizada junto com o apoio de *skidder*, pois quando se comparam os resultados do cenário V com o cenário II não se percebe variação nos custos totais nem unitários.

5.5.2.2 Utilização das CVC

A minimização dos custos foi alcançada através do transporte de 99,8 % da madeira com o Tritrem e 0,2% da madeira com o Romeu e Julieta (4 eixos) conforme demonstrado na Tabela 56.

TABELA 56: VOLUME TRANSPORTADO POR CVC

Droioto		Volume/CVC	; (t)	
Projeto	Tritrem	Rodotrem	Bitrem	Romeu e Julieta
JGA	115.312	-	-	686
AVI	20.540	-	-	-
MIR	59.397	-	-	-
CIR	27.798	-	-	-
DSN	104.908	-	-	-
Total	327.955	-	-	686
%	99,8%	0,0%	0,0%	0,2%

5.5.2.3 Volumes de madeira baldeada

O modelo garantiu a restrição de volume mínimo de segurança em estradas com revestimento primário alocando 164,3 mil t, ou 50 %, de madeira através da realização de baldeio em 104 mil t, e adequando estradas para transportar outras 60,2 mil t, conforme os resultados apresentados na Tabela 57.

TABELA 57: VOLUMES MÍNIMOS DE SEGURANÇA PÓS ADEQUAÇÃO E BALDEIO PARA O CENÁRIO V

Projeto	Volume de mad	eira nos graus 1 a 4 (t)	Volume	Volume mínimo de segurança no
	Pré-adequação	Pós-adequação	baldeado (t)	revestimento primário (t)
JGA	14.316	18.364	39.635	57.999
AVI	685	685	9.585	10.270
MIR	1.344	1.897	27.802	29.699
CIR	-	-	13.899	13.899
DSN	39.336	39.336	13.118	52.454
Total	55.681	60.282	104.038	164.321
%		18,3%	31,7%	50,0%

5.5.2.4 Quantificação de estradas adequadas

O modelo calculou que para a operação ocorrer de forma otimizada são necessários a adequação de 857 m de estradas, e que seja realizada uma manutenção leve com patrolamento em outros 71.253 m de estradas para garantir o acesso das composições até os talhões conforme demonstrado na Tabela 58.

TABELA 58: QUANTIDADE DE ESTRADAS ADEQUADAS POR GRAU DE DIFICULDADE PARA O CENÁRIO V

1711010 OLIVIIIO V									
CDAtual		Qı	ıantida	de de e	estradas /	Adequa	das m	/GD	
GDAtual	GD1	GD2	GD3	GD4	GD5	GD6	GD7	GD8	Total
GD1	9.030	-	-	-	-	-	-	-	
GD2	-	255	-	-	-	ı	-	ı	
GD3	-	-	265	-	-	-	-	-	
GD4	-	ı	-	80	-	ı	-	ı	
GD5	-	ı	-	-	61.163	ı	-	ı	
GD6	-	405	-	-	-	-	-	-	
GD7	-	452	-	-	-	ı	90	ı	
GD8	-	-	-	-	-	-	-	370	
Total de Manutenção	9.030	255	265	80	61.163	-	90	370	71.253
Total de Adequação	-	857	-	-	-	-	-	-	857

As maiores quantidades de adequações foram em transformar estradas do grau 6 e 7 em estradas do grau 2 permitindo assim o transporte com Tritrem.

6 CONCLUSÕES

O modelo matemático desenvolvido em programação linear inteira mista para otimização dos custos de transporte de toras com base na qualidade de estradas conseguiu resolver todas as condicionantes dos cenários propostos, mostrando-se como uma ferramenta apropriada para auxílio na tomada de decisões no planejamento logístico florestal.

A sistemática utilizada para se obter as informações que alimentam o modelo apresentou-se adequada e prática, onde através da utilização de graus de dificuldade pode-se classificar as estradas de uso florestal de acordo com as os parâmetros de qualidade: tipo de revestimento e declividade.

As quatro variáveis utilizadas para a composição dos cinco cenários avaliados representaram situações reais operacionais e contribuíram para os a geração e avaliação de resultados no modelo.

Entre os cenários avaliados, o cenário I apresentou o menor custo unitário (R\$ / t) por tonelada de madeira.

Para as condições operacionais avaliadas, a utilização de uma restrição de garantia de 50% do volume de madeira, disponível em estradas com revestimento primário, representou um aumento aproximado em 10,6% nos custos operacionais.

Para as 4 diferentes CVC avaliadas, o Tritrem foi a mais indicada para o transporte de madeira nos cinco cenários, principalmente devido a seu custo unitário por tonelada transportada ser menor que as demais composições.

Nas análises de limites técnicos das CVC o Romeu e Julieta (4 eixos) foi a que apresentou maior capacidade de vencer rampas quando carregado.

Verificou-se uma tendência de viabilidade econômica do baldeio na medida em que se aumenta a declividade das estradas.

A utilização de um trator florestal *skidder* de apoio faz com que as CVC vençam maiores rampas, porém os custos operacionais totais otimizados são aumentados.

Nas quantidades de melhorias sugeridas para diminuição do IRI das rotas, os custos de frete projetados e conseqüentemente o custo final otimizado não compensaram os investimentos realizados para os volumes analisados. Porém,

caso consiga-se planejar e aumentar os volumes de madeira que passam nestas rotas esta opção poderá ter o menor custo otimizado.

A opção de se usar o peso técnico sobre os eixos de tração das composições não demonstrou agregar resultado quando a operação é realizada junto com o apoio de *skidder*.

O uso do peso técnico sobre os eixos de tração pode aumentar o limite das rampas vencidas pelas CVC caso esta opção seja possível na prática.

A simulação do aumento da potência dos caminhões, para as condições operacionais da área de estudo e conforme as premissas adotadas, não representou diminuição de custos de adequação de estradas.

7 RECOMENDAÇÕES

O modelo de minimização de custos pode evoluir como ferramenta operacional de planejamento florestal se for integrada com um SIG - Sistema de Informações Geográficas, onde os resultados das análises possam ser visualizadas espacialmente e também otimizadas por segmento de estradas.

Para que os resultados do modelo se efetivem na prática, com o menor custo, é importante que o planejamento dos projetos e a adequação das estradas ocorra com no mínimo 1 ano de antecedência da operação de transporte obedecendo critérios técnicos adequados.

Com um planejamento antecipado e com mais projetos analisados os custos de adequação das rotas poderão entrar no modelo de forma mais diluída, podendo viabilizar maiores produtividades no transporte pela diminuição do Índice de Irregularidade das estradas.

O montante financeiro gasto com adequação de estradas para transporte de madeira no momento da colheita, normalmente é analisado como custo direcionado para o resultado no exercício. Caso estes valores possam ser analisados como investimentos, e seu benefício agregado para mais rotações florestais, podem ser realizadas outras análises onde o modelo poderá sugerir mais adequações ao invés de baldeio.

Além dos cenários avaliados, outros intermediários ou novos podem ser propostos e avaliados, como por exemplo a utilização somente do peso técnico sobre os eixos de tração, a extrapolação do PBT, variações no tipo de cavalo mecânico e implementos como a utilização do rodotrem homologado, variações de sistemas operacionais e custos de baldeio e apoio, uso de diferentes coeficientes de atrito pneu / solo e de rolamento, etc.

Em virtude dos cálculos de rampa apresentarem valores altos, mesmo tendo-se referências técnicas, sugere-se testes práticos em campo com as CVC para calibragem dos greides máximos.

Para melhoria nas projeções de velocidades, consumos de combustíveis e manutenção das CVC em função da melhoria do IRI, pode ser utilizada a metodologia HDM versão III ou superior - VOC do Banco Mundial.

REFERÊNCIAS BIBLIOGRÁFICAS

- AASTHO. **The voice of transportation.** Disponível em: www.transportation.org. Acesso em: 04 jul. 2010.
- ABRAF. **Anuário estatístico da ABRAF**: ano base 2008. Brasília: ABRAF, 2009, 120p.
- ARCE, J. E. Um sistema de programação do transporte principal de multiprodutos florestais visando a minimização dos custos. 1997. Dissertação (Mestrado em Ciências Florestais) Universidade Federal do Paraná, Curitiba.
- ASABE American Society of Agricultural and Biological Engineers. **Agricultural machinery management EP 496.2 Standards 2005**. 52.ed., St. Joseph: ASABE. 2005. 4p.
- BARBOSA. S. T. Evolução do sistema de transporte florestal na região de Telêmaco Borba. 2004. Monografia (Trabalho Conclusão de Curso) Universidade Estadual de Ponta Grossa, Telêmaco Borba.
- BERGER. R, TIMOFEICZYK R. JR.; CARNIERI, C.; LACOWICZ, P. G.; SAWINSKI. J. JR.; BRASIL, A. A.; Minimização de custos de transporte florestal com a utilização da programação linear. **Floresta**, Curitiba, v. 33, n. 1, p 53-62, 2003.
- BRANCO, Pércio de Moraes. **Mineral, rocha ou pedra.** Disponível em: ">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1047&sid=129>">http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm
- BRASIL. **Resolução n° 68, de 23 de setembro de 1998**. Estabelece requisitos de segurança necessários à circulação de Combinações de Veículos de Carga CVC, a que se referem os arts. 97 99 e 314 do Código de Trânsito Brasileiro-CTB e os §§ 3º e 4º dos arts. 1º e 2º, respectivamente, da Resolução 12/98 CONTRAN. Disponível em: < http://www.antt.gov.br/legislacao/internacional/ResCONTRAN68-98.pdf>. Acesso em 10 jul.2010.

BRASIL. **Resolução n° 75, de 19 de novembro de 1998.** Estabelece os requisitos de segurança necessários a circulação de Combinações para Transporte de Veículos - CTV. Disponível em: http://www.antt.gov.br/legislacao/internacional/ResCONTRAN75-98.pdf>. Acesso em 10 jul.2010.

BRASIL. **Resolução n° 246, de 27 de julho de 2007.** Altera a Resolução nº 196, de 25 de julho de 2006, do CONTRAN, que fixa requisitos técnicos de segurança para o transporte de toras de madeira bruta por veículo rodoviário de carga. Disponível em: http://www.detran.sp.gov.br/legis/resolucao_2007_246.asp. Acesso em 10 jul.2010.

BRAZ, E. M. Otimização da rede de estradas secundárias em projetos de manejo sustentável de floresta tropical. EMBRAPA: Rio Branco, 1997. (EMBRAPA - Circular Técnica, n.15).

CATERPILLAR. **525 C - trator florestal de rodas**. Disponível em: http://forestprocat.com/cda/files/1030896/7/525C_Specalog_Portuguese_APHQ5670.pdf. Acesso em 04 jul. 2010.

CORREA, C. M.C.; MALINOVSKI, J. R.; ROLOFF, G. Bases para planejamento de rede viária em reflorestamento no sul do Brasil. **Floresta**, Curitiba, v. 36, n. 2, p.277-286, mai./ago. 2006.

BRASIL, Código de Trânsito Brasileiro. **Código de trânsito brasileiro**: instituído pela Lei nº 9.503, de 23-09-1997. 3.ed. Brasília: DENATRAN, 2008. disponível em: < http://www.denatran.gov.br/publicacoes/download/ctb.pdf>. Acesso em 04 jul. 2010.

DANTZIG, G. B. **Linear programming and extensions**. Princeton, New Jersey: Princeton University Press, 1963.

DIETZ, P. Parâmetros da rede viária e sua otimização. In: CURSO DE ATUALIZAÇÃO SOBRE SISTEMAS DE EXPLORAÇÃO E TRANSPORTE FLORESTAL, 4., 1983. **Anais...** Curitiba: Fundação de Pesquisas Florestais, 1983. p.22-32.

CURSO DE ATUALIZAÇÃO SOBRE SISTEMAS DE EXPLORAÇÃO E TRANSPORTE FLORESTAL, 4, 1983, Curitiba. **Anais...** Curitiba: FUPEF, 1983. 153p.

EQUIPE JORNALÍSTICA DA REVISTA MADEIRA. Perspectivas para a Logística Brasileira. **Revista da Madeira**, Curitiba, n.108, p.04-13, out. 2007.

FREITAS, L. C.; MARQUES, G. M; SILVA, M. L.; MACHADO, R.R.; MACHADO, C. C. Estudo comparativo envolvendo três métodos de cálculo de custo operacional do caminhão bitrem. **Árvore**, Viçosa, v.28, n.6, p.855-863, 2004.

GIACOMINI, B. ., HORNINK, G. G., COMPIANI, M. . Diabásio **Geociências Virtual**, 26 out. 2009. Disponível em: http://www.ib.unicamp. br/lte/gv/visualizarMaterial.phpidMaterial=982>. Acesso em: 11 mar. 2010.

GUIMARÃES, H. S. A logística como fator decisivo das operações de colheita e transporte florestal. In: SEMINÁRIO DE ATUALIZAÇÃO SOBRE SISTEMAS DE COLHEITA E TRANSPORTE FLORESTAL, 13, 2004, Curitiba. **Anais...** Curitiba: UFPR, 2004. p.127-146.

GUNN, E. A. Some aspects of hierarchical production planning in forest management. In: SYMPOSIUM ON SYSTEMS ANALYSIS IN FOREST RESOURCES, 1991, Charleston, South Carolina. **Proceedings...** Asheville, NC: USDA, Forest Service, Southeastern Forest Experiment Station, 1991. p. 54-62.

GUNN, E. A.; RAI, A. K. Modelling and decomposition for planning long-term forest harvesting in an integrated industry structure. **Canadian Journal of Forest Research**, v. 17, p. 1507-1518, 1987.

HANSEN, Don R.; MOWEN, Maryanne M. **Gestão de custos**: contabilidade e controle. São Paulo: Editora Pioneira, 2001.

INPACEL. Encontro do "Grupo de Discussão Sobre Rede Viária". Arapoti: International Paper, 2001. (Não publicado).

ISARD, Walter. **Introduction to Regional Science**. Lansing: Michigan States, 1975.

JAMNICK, M. S.; BURGER, D. H.; Using linear programming to make wood procurement and distribution decisions. **The Forestry Chronicle**, v. 71, n. 1, p. 89-96, jan./fev. 1995.

KRETSCHEK, O. E. Estudo de um sistema viário para a retirada de madeira, visando a minimização de danos ambientais, em regiões montanhosas. In: SEMINÁRIO DE ATUALIZAÇÃO EM SISTEMAS DE COLHEITA DE MADEIRA E TRANSPORTE FLORESTAL, 9, 1996, Curitiba. **Anais...** Curitiba, PR: UFPR/IUFRO, Mai, 1996. p.45-52.

LACOWICZ, P. G.; BERGER. R.; TIMOFEICZYK R. JR.; GARZEL, J. C.; Minimização dos custos de transporte rodoviário florestal com o uso da programação linear e otimização do processo. **Floresta**, Curitiba, v. 32, n. 1, p.75-87, 2002.

LEITE, A. M. P. Análise dos fatores que afetam o desempenho de veículos e o custo de transporte de madeira no distrito florestal do Vale do Rio Doce, MG. 1992. Dissertação (Mestrado em Ciências Florestais) - Universidade Federal de Viçosa, Viçosa – MG.

LEITE, J. M. A otimização dos custos do transporte rodoviário de madeira roliça de oriunda de reflorestamento. 2002. Tese (Doutorado em Ciências Florestais) – Universidade Federal do Paraná, Curitiba.

LOPES, E. S.; MACHADO, C. C.; SOUZA, A. P.; RIBEIRO, A.A.C.S. Harvesting and wood transport planning with SNAP III program (Scheduling and Network Analysis Program) in a pine plantation in Southeast Brazil. **Arvore**, Viçosa, v. 27, n.6, Nov./Dez., 2003.

MACHADO, C. C. Planejamento e controle de custos na exploração florestal. Viçosa: 1984. 138 p.

MACHADO, C. C. Sistema brasileiro de classificação de estradas de uso florestal (SIBRACEF): Desenvolvimento e relação com o meio de transporte florestal rodoviário. 1989. Tese (Doutorado em Ciências Florestais) - Universidade Federal do Paraná, Curitiba.

MACHADO, C. C.; LOPES, E. S.; BIRRO, M. H. **Elementos básicos do transporte florestal rodoviário.** Viçosa: UFV, 2000,167p.

MACHADO, C. C.; LOPES, E. da S. Planejamento. In: MACHADO, C. C. (Ed.). **Colheita Florestal**. Viçosa, MG: UFV, 2002. p. 169-213.

MACHADO, C. C.; MALINOVSKI, J. R. A planificação da rede rodoviária em reflorestamentos. In: SIMPOSIO SOBRE EXPLORAÇÃO, TRANSPORTE, ERGONOMIA E SEGURANCA EM REFLORESTAMENTOS, 1987, Curitiba. **Anais.**.. Curitiba: UFPR/IUFRO, 1987. p.01-13

MALINOVSKI, J. R.; PERDONCINI, W. Estradas de uso florestal. Colégio Florestal de Irati - GTZ, Irati, 1990. 100p.

MALINOVSKI, J. R. et al **Código de prática para estradas de uso florestal**. Otacílio Costa: Malha Viária Logística de Estradas, 2004. (Apostila).

MALINOVSKI, J. R.; FENNER, P. T. **Otimização do transporte de madeira roliça de Pinus spp**. Curitiba: FUPEF/UFPR. 1986, p. 68.

MALINOVSKI, R. A.; MALINOVSKI, J. R. Evolução dos Sistemas de Colheita de Pinus na Região Sul do Brasil. Curitiba, PR: FUPEF, 1998.

MARQUES, R. T. Otimização de um sistema de transporte florestal rodoviário pelo método PERT/CPM. 1994. Dissertação (Mestrado em Ciências Florestais) - Universidade Federal de Viçosa, Viçosa.

MARQUES, R.; CASTRO, L.G; REIS, R.P. Custo de produção da cafeicultura orgânica: estudo de caso. Disponível em <ttp://www.coffeebreak.com.br/ocafezal.asp?SE=8&ID=482>. Acesso em 09 ago. 2010.

MARTINI, E. L., BARBOSA L. N. Planejamento Florestal: A importância e da aplicação da programação linear. IN: ENCONTRO BRASILEIRO DE ECONOMIA FLORESTAL: 1. **Anais...** Curitiba, 1988. p. 545-74.

McNALLY, J.A. Truck and trailers and their application to logging operations. New Brunswic: Faculty of Forestry, 1975. 400p.

MERCEDES BENZ. **Caminhões**. http://www.mercedes-benz.com.br/pdfs/caminhoes/volante_axor_3344_plataforma.pdf>. Acesso em 04 jul. 2010.

NASCIMENTO, F. R. Comparação entre um modelo teórico e o real, no investimento em construção de estradas de uso florestal, relacionado com o volume de madeira transportado. 2005. Tese (Doutorado em Ciências Florestais) - UNESP, Botucatu – SP.

NOMA DO BRASIL. **Especificações Técnicas do Produto**: Carroceria Florestal + RJ 4 eixos; Bitrem toras 7500 8 fueiros; Tritrem toras 7500 122 fueiros; Rodotrem toras 25 m 16 fueiros.

ONO, T. R.; BOTTER. R.D. Utilizando a logística como elemento integrador na empresa: oportunidades para desenvolvimento de pesquisas e aperfeiçoamento profissional. In: SIMPÓSIO BRASILEIRO SOBRE COLHEITA E TRANSPORTE FLORESTAL, 7, 2005, Vitória, ES. **Anais...** Vitória: SIF, Set., 2005. p 143-151.

PAREDES, G.; SESSIONS, J. A solution method for the transfer yard location problem. **Forest products journal**, Madison, v. 38, n. 3, p. 53-8, 1988.

QUADROS D. S. Análise econômica de empresas prestadoras de serviço florestal em duas regiões do estado de Santa Catarina. 2010. Tese (Doutorado em Ciências Florestais) - Universidade Federal do Paraná, Curitiba.

ROBAK, E. W. T. Integrated forest management system (IFMS) designs for north american forest product companies. In: JOINT MEETING OF THE COUNCIL ON FOREST ENGINEERING AND INTERNATIONAL UNION OF FOREST RESEARCH ORGANIZATIONS, 1996, Marquette, Michigan. **Proceedings...** St.

Paul, MN: USDA, Forest Service, North Central Forest Experiment Station, 1996, p. 246-255.

SAAB SCANIA. Scania desempenho. São Paulo: 1985. 27 p.

SALKIN, H. M. **Integer programming - Reading**. Massachusetts: Addison-Wesley, 1975.

SCANIA. Imagens. Disponível em: http://www.scania.com.br/Images/571_P%20420%20CB6x4SZ%20STD12520090101_144796.pdf http://www.scania.com.br/Images/571_P%20420%20CA6x4SZ%20STD_95_20090101_144796.pdf>. Acesso em 04/07/2010.

SEIXAS, F.; WID EMER, J. A.; Seleção e dimensionamento da frota de veículos rodoviários para o transporte principal de madeira utilizando-se de programação linear não inteira. **IPEF**, Piracicaba, n.46, p.107-118, jan./dez.1993

SEIXAS, F. **Exploração e transporte de Eucalyptus spp**. Piracicaba: IPEF, 1987. 40p.

SEIXAS. F.; CAMILO. D. **Colheita e Transporte Florestal** – Notas de aula – ESALQ – USP – Piracicaba, 2008, 241p.

SESSIONS, J. A heuristic algorithm for the solution of the variable and fixed cost transportation problem. In. SYMPOSIUM ON SYSTEMS ANALYSIS IN FOREST RESOURCES. Athens. 1985. **Proceedings.** Athens, Georgia Center for Continuing Education. 1987. p. 324-36.

SILVEIRA, G.M.; SIERRA, J. G.; Eficiência energética de tratores agrícolas fabricados no Brasil. **Revista Brasileira de Engenharia Agrícola e Ambienta**l, Campina Grande, v.14, n.4, p.418–424, 2010.

SILVERSIDES, A. P. Um estudo de tempo e produção na exploração de povoamentos jovens de Douglas-fir com motoserra e "skidder". **Árvore**, Viçosa, 1978, p. 1-26.

SILVICONSULT. **Boletim Radar Silviconsult**, Ano 2, Edição 5, Jul.2010.

SOUZA, A.P. et al Estudo técnico-econômico da extração de madeira de eucalipto utilizando o trator florestal transportador ("forwarder"). **Árvore**, Viçosa, v.12, n.2, p. 87-99, 1988.

SOUZA D. O. Algoritmos genéticos aplicados ao Planejamento do transporte principal de madeira. 2004. Dissertação (Mestrado em Ciências Florestais) - Universidade Federal do Paraná, Curitiba.

UFRGS - Instituto de Geociências Departamento de Mineralogia e Petrologia Museu Luiz Englert. **Rochas**. Disponível em: http://www.museumin.ufrgs.br/ ROTextoRochas.htm>. Acesso em 11 mar. 2010.

VIANA, G. A. **Associação Nacional do Transporte de Cargas**. Disponível em: http://www.ntc.org.br>. Acesso em: 27 de fev. 2002.

VOLVO. Prospecto técnico do produto VOLVO FM 6X4T. 2010.

WEINTRAUB, A.; GUITART, S.; KOHN, V. Strategic planning in forest industries. **European Journal of Operational Research**, v. 24, p. 152-162, 1986.

WEINTRAUB, A.; JONES, G.; MAGENDZO, A.; MEACHAM, M.; KIRBY, M. A heuristic system to solve mixed integer forest planning models. **Operations Research,** v. 42, n. 6, p. 1010-1024, nov./dez. 1994.

WILLIAMSON, G.; NIEUWENHUIS, M. Integrated timber allocation and transportation planning in Ireland. **Journal of Forest Engineering**, v. 5, n. 1, p. 07-15, jul. 1993.

ZATTA, F. N,; FREIRE, H. V. L; CASTRO, M. L .; COSER M.B.; ZANQUETTO, H. F. Custos Indiretos (fixos) versus Receita Operacional Líquida: Um estudo do Setor Elétrico. 2002. Disponível em: <eco.unne.edu. ar/contabilidad/costos/VIIIcongreso/192.doc>. Acesso em 09/08/2010.

ZIONTS, S. **Linear and integer programming**. New Jersey: Prentice-Hall, 1974.

ANEXO I - Estação de Referência localizada na COPEL em Guarapuava, PR

Anexo I: Estação de Referência localizada na COPEL em Guarapuava, PR.

Receptor GPS TRIMBLE Pathfinder Pro XR de 12 canais; L1
apenas; SNR Mask 4; Elevation Mask 10; PDOP Mask 8; PDOP
Switch 8.
Horário Universal de Greenwich. Três (3) horas a mais do que
a hora local da região Sul/Sudeste do Brasil, exceto em horário de
verão.
Datum: WGS-84
Latitude: 25° 22' 00,49848" S
Longitude: 51° 29' 45,31139" W
Altitude: 1054,1810 m (HAE)
Coordenadas referidas ao centro de fase da antena.
Antena: Compact L1 com Plano de Terra.
Ponto irradiado da estação de referência localizada em
Curitiba - PR, pertencente a rede RBMC do IBGE.
Dados disponíveis no formato .SSF, primários no formato
.EXE autoexpansível.
Taxa de Gravação: 05 segundos (Código C/A + fase L1).
Arquivos de 1 hora de rastreio, com a seguinte nomenclatura:
XYMMDDHH.SSF onde: X significa que trata-se de um
arquivo da estação base de Guarapuava - PR; Y é o último dígito do
ano corrente; MM o mês corrente; DD o dia corrente e HH a hora do
dia.

Exemplo: X8030610.SSF é um arquivo contendo 1 hora de observações iniciadas às 10:00 da manhã (horário de Greenwich) do dia 06 de Março de 1998. O programa gera 1 arquivo a cada hora. O tamanho médio dos arquivos primários (.EXE) é de 200K.

ANEXO II - Perfil vertical de um segmento de estrada

ANEXO III - Demonstrativo de cálculo de rampa (i -greide) vencidos pelas CVC conforme o tipo de pavimento

Demonstrativo de cálculo da rampa máxima (i) para a composição Titrem com peso legal válido, em leito natural, para o cenário I.

Tr = Tm x ic x id x k = 204 x 16,41 x 7,21 x 0,9 = 21.723 kgfm
FR =
$$(\text{Tm x ic x id x k})/\text{Rd} = 21.723/0,55 = 39.713 kgf$$

Rr = G x RRs = 74 x 35 = 2.590 kg
Ri = G x 1.000 x i = 74 x 1.000 x i = 74.000 x i
Fa = considerado 0
Fad = P x Y = 17.000 * 0,5 = 8.500 kgf
R = Rr + Ri + Fa = 2.590 + 74.000 x i + 0

Como Fad < FR, utiliza-se Fad para o cálculo de i

Para que haja movimento a Fad deve ser maior que R então diminui-se 1 e iguala-se as equações:

$$(Fad-1) = R$$

 $(8.500 - 1) = 2.590 + 74.000 \times i$
 $i = 5.909/74.000 = 0.08 = 8\%$

Demonstrativo de cálculo da rampa (i -greide) vencido pelas CVC conforme o tipo de pavimento – Cenário I

						0,10/1	T NA CALT	100	0000	يۇتتان	-			
				:		000	VOIN FIN OX4 1 - 400 CV - FESO LEGAI - CEITAILO	- 400 004 -	1 CS L	מו - ספוומוו	_	(
יוט מו	Parâmetros Técnicos	2		Tritrem			Rodotrem			Bitrem		Ro	Romeu e Julieta	ta
5		5	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.
			natural	primário	definitivo	natural	primário	definitivo	natural	primário	primário definitivo	natural	primário	definitivo
ტ	Peso bruto total combinado	t	74	74	74	74	74	74	22	25	29	25	25	22
Ę	Torque máximo do motor	kgf x m	204	204	204	204	204	204	204	204	204	204	204	204
ల	Maior relação de redução na caixa de cambio		16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41
<u>a</u>	Relação de redução no eixo traseiro (total)		7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21
R	Raio dinâmico do pneu do eixo de tração 11 x 22	٤	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
ᅩ	Rendimento energético	%	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06
>	Velocidade	Km / h	-							-	•			
₾	Somatório dos pesos incidentes nos eixos de tração	kg	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000
n	Coeficiente de atrito pneu x solo		0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70
ī	Torque na roda	kgfm	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723
FR	Força disponível na roda	kgf	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713
RRs	RRs Coeficiente de resistência ao rolamento	kg / t	35	18	6	32	18	6	35	18	6	32	18	6
ፚ	Resistência ao rolamento	kg	2.590	1.332	999	2.590	1.332	999	1.995	1.026	513	1.995	1.026	513
-	greide (rampa)	%	8,0%	10,8%	15,2%	8,0%	10,8%	15,2%	11,4%	14,6%	20,0%	11,4%	14,6%	20,0%
密	Resistência de rampa	kg	5.909	8.017	11.233	5.909	8.017	11.233	6.504	8.323	11.386	6.504	8.323	11.386
Ca	Coeficiente aerodinâmico		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Αŧ	Área frontal	m ²	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56
>	Velocidade do Vento (+ ou -)	km / h	-	-	-	-	-	-	-	-	-	-	-	-
۵	Densidade do ar	m^2/s	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Fa	Resistência aerodinâmica	kg	-	-	-	-	-	-	-	-	-	-	-	-
Fad	Fad Força de aderência - legal	kgf	8.500	9.350	11.900	8.500	9.350	11.900	8.500	9.350	11.900	8.500	9.350	11.900
œ	Resistência ao movimento	kg	8.499	9.349	11.899	8.499	9.349	11.899	8.499	9.349	11.899	8.499	9.349	11.899

Demonstrativo de cálculo da rampa (i -greide) vencido pelas CVC conforme o tipo de pavimento – CVC Vazias

							VOVO EN	Volvo EM 6XI T - 400 cv - Vazio	1000	/azio				
i				Tritrem			Rodotrem			Bitrem		R	Romeu e Julieta	ita
Sigla	Parametros lécnicos	5	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.
			natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo
ഗ	Tara	ţ	25,1	25,1	25,1	26,7	26,7	26,7	20,0	20,0	20,0	20,1	20,1	20,1
Tm	Torque máximo do motor	kgf x m	204	204	204	204	204	204	204	204	204	204	204	204
ပ္	Maior relação de redução na caixa de cambio		16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41
면	Relação de redução no eixo traseiro (total)		7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21
Rd	Raio dinâmico do pneu do eixo de tração 11 x 22	Ε	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
ᅩ	Rendimento energético	%	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06
>	Velocidade	Km / h		•						-				-
Д	Somatório dos pesos incidentes nos eixos de tração	kg	6.095	6.095	6.095	6.580	6.580	6.580	6.095	6.095	6.095	6.970	6.970	6.970
ח	Coeficiente de atrito pneu x solo		0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70
Ľ	Torque na roda	kgfm	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723
FR	Força disponível na roda	kgf	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713
RRs	RRs Coeficiente de resistência ao rolamento	kg / t	32	18	6	32	18	6	35	18	6	32	18	6
፳	Resistência ao rolamento	kg	880	452	226	933	480	240	700	360	180	704	362	181
	greide (rampa)	%	8,6%	11,5%	16,1%	8,8%	11,8%	16,4%	11,7%	15,0%	20,4%	13,8%	17,3%	23,4%
密	Resistência de rampa	kg	2.167	2.899	4.040	2.356	3.138	4.365	2.347	2.991	4.086	2.781	3.471	4.697
Ca	Coeficiente aerodinâmico		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Αŧ	Área frontal	m ²	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56
>	Velocidade do Vento (+ ou -)	km / h	-	-	-	-	-	-	-	-	-	-	-	-
۵	Densidade do ar	m^2/s	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Fa	Resistência aerodinâmica	kg	-	-	-	-	-	-	-	-	-	-	-	-
Fad	Fad Força de aderência - legal	kgf	3.048	3.352	4.267	3.290	3.619	4.606	3.048	3.352	4.267	3.485	3.834	4.879
œ	Resistência ao movimento	kg	3.047	3.351	4.266	3.289	3.618	4.605	3.047	3.351	4.266	3.484	3.833	4.878

Demonstrativo de cálculo da rampa (i -greide) vencido pelas CVC conforme o tipo de pavimento – Cenário II

						2/0//	Violating EM 6VA T Ann on Doco Local + Application	700	0000	4 LCD				
						× 5 ×		2004 -	1 C20 I	טלה - ושני	2			
מוכוע	Parâmetros Técnicos	<u>E</u>		Tritrem			Rodotrem			Bitrem		S.	Romeu e Julieta	ita
ט פט מ		5	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.
			natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo
ഗ	Peso bruto total combinado	t,	74	74	74	74	74	74	25	25	22	25	25	22
T	Torque máximo do motor	kgf x m	204	204	204	204	204	204	204	204	204	204	204	204
ပ္	Maior relação de redução na caixa de cambio		16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41
g	Relação de redução no eixo traseiro (total)		7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21
路	Raio dinâmico do pneu do eixo de tração 11 x 22	E	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
ᅩ	Rendimento energético	%	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06
>	Velocidade	Km / h			•		1							-
Ф	Somatório dos pesos incidentes nos eixos de tração	kg	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000
n	Coeficiente de atrito pneu x solo		0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70
Ľ	Torque na roda	kgfm	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723
FR	Força disponível na roda	kgf	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713
RRs	Coeficiente de resistência ao rolamento	kg / t	32	18	6	35	18	6	35	18	6	35	18	6
፳	Resistência ao rolamento	kg	2.590	1.332	999	2.590	1.332	999	1.995	1.026	513	1.995	1.026	513
	greide (rampa)	%	23,4%	26,7%	15,2%	23,4%	26,7%	15,2%	31,5%	35,2%	20,0%	31,5%	35,2%	20,0%
密	Resistência de rampa	kg	17.341	19.741	11.233	17.341	19.741	11.233	17.936	20.047	11.386	17.936	20.047	11.386
S	Coeficiente aerodinâmico		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Af	Área frontal	m^2	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	95'2	7,56	7,56
^	Velocidade do Vento (+ ou -)	km / h	-	-	-	-	-	-	-	-	-	-	-	-
۵	Densidade do ar	m^2/s	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Fa	Resistência aerodinâmica	kg	-	-	-	-	-	-	-	-	-	-	-	-
Fad	Força de aderência - Peso legal + Apoio	kgf	19.932	21.074	11.900	19.932	21.074	11.900	19.932	21.074	11.900	19.932	21.074	11.900
œ	Resistência ao movimento	kg	19.931	21.073	11.899	19.931	21.073	11.899	19.931	21.073	11.899	19.931	21.073	11.899

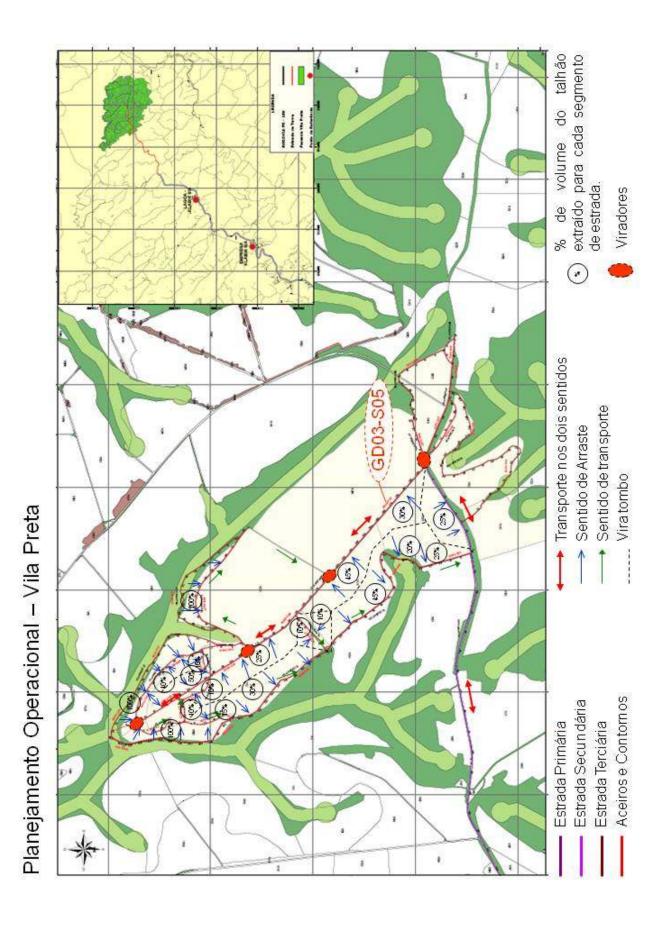
Demonstrativo de cálculo da rampa (i -greide) vencido pelas CVC conforme o tipo de pavimento – Cenário III

							1/0//	Volve EM 6X1 T 400 ex	T 400					
							NO.	+VO IVI O	1 - 400 C					
יוני מוכינע	Parâmatros Tácnicos	<u>8</u>		Tritrem			Rodotrem			Bitrem		B	Romeu e Julieta	ta
ט מ		5	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.
			natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo
ტ	Peso bruto total combinado	t t	74	74	74	74	74	74	25	25	25	25	22	22
T	Torque máximo do motor	kgf x m	204	204	204	204	204	204	204	204	204	204	204	204
ပ္	Maior relação de redução na caixa de cambio		16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41
ġ	Relação de redução no eixo traseiro (total)		7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21
Rd	Raio dinâmico do pneu do eixo de tração 11 x 22	Е	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
ч	Rendimento energético	%	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06
>	Velocidade	Km/h		1			•	-		-	-			
Д	Somatório dos pesos incidentes nos eixos de tração	kg	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000
ס	Coeficiente de atrito pneu x solo		0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70
Ļ	Torque na roda	kgfm	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723
FR	Força disponível na roda	kgf	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713
RRs	RRs Coeficiente de resistência ao rolamento	kg/t	35	18	6	32	18	6	35	18	6	32	18	<u></u>
፳	Resistência ao rolamento	kg	2.590	1.332	999	2.590	1.332	999	1.995	1.026	513	1.995	1.026	513
	greide (rampa)	%	8,0%	10,8%	15,2%	8,0%	10,8%	15,2%	11,4%	14,6%	20,0%	11,4%	14,6%	20,0%
运	Resistência de rampa	kg	5.909	8.017	11.233	5.909	8.017	11.233	6.504	8.323	11.386	6.504	8.323	11.386
Ca	Coeficiente aerodinâmico		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Af	Área frontal	m^2	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	2,56	7,56	7,56
>	Velocidade do Vento (+ ou -)	km / h	-	-	-	,	-	-	-	-	-	-	-	-
۵	Densidade do ar	m^2/s	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Fa	Resistência aerodinâmica	kg	-	-	-	-	-	-	-	-	-	-	-	-
Fad	Fad Força de aderência - legal	kgf	8.500	9.350	11.900	8.500	9.350	11.900	8.500	9.350	11.900	8.500	9.350	11.900
껕	Resistência ao movimento	kg	8.499	9.349	11.899	8.499	9.349	11.899	8.499	9.349	11.899	8.499	9.349	11.899

Demonstrativo de cálculo da rampa (i -greide) vencido pelas CVC conforme o tipo de pavimento – Cenário IV

							10/	Volve EM 6XI T 480 CV	7 08V T					
				Trifrem			Rodotrem		-	Bitrem		Roz	Romeir e .liilieta	ā
Sigla	Parâmetros Técnicos	ڃ ڪ	otio	Dayloct	Dayloct	otio	Daybet	Dovet	ctia	Dayot	Dayloct	otia	Dove	Daybet
			בבונס	nevest.	Acfinition	בבווס		Opfinition	ביוויסם	nevest.	nevest. Nevest.	2		dofinition
,		,	IIatulai	pillialio	CALILLIAN	IIatulai		Ocili III NO	IIatulai	pilliaio	ON III III AN	liatu		
ഗ	Peso bruto total combinado	ţ	74	74	74	74	74	74	22	22	22	22	22	22
Ę	Torque máximo do motor	kgf x m	245	242	242	245	245	245	245	245	245	242	242	245
<u>ပ</u>	Maior relação de redução na caixa de cambio		16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41
g	Relação de redução no eixo traseiro (total)		7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21
路	Raio dinâmico do pneu do eixo de tração 11 x 22	Ε	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
ᅩ	Rendimento energético	%	90%	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06
>	Velocidade	Km / h		-							•			-
Ф	Somatório dos pesos incidentes nos eixos de tração	kg	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000	17.000
n	Coeficiente de atrito pneu x solo		0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70
Ļ	Torque na roda	kgfm	26.089	26.089	26.089	26.089	26.089	26.089	26.089	26.089	26.089	26.089	26.089	26.089
FR	Força disponível na roda	kgf	47.694	47.694	47.694	47.694	47.694	42.694	47.694	47.694	47.694	47.694	47.694	47.694
RRs	RRs Coeficiente de resistência ao rolamento	kg / t	32	18	6	32	18	6	35	18	6	32	18	6
ፚ	Resistência ao rolamento	kg	2.590	1.332	999	2.590	1.332	999	1.995	1.026	513	1.995	1.026	513
-	greide (rampa)	%	8,0%	10,8%	15,2%	8,0%	10,8%	15,2%	11,4%	14,6%	20,0%	11,4%	14,6%	20,0%
密	Resistência de rampa	kg	5.909	8.017	11.233	5.909	8.017	11.233	6.504	8.323	11.386	6.504	8.323	11.386
S	Coeficiente aerodinâmico		0,85	98'0	0,85	0,85	0,85	0,85	0,85	0,85	98'0	0,85	0,85	0,85
Αŧ	Área frontal	m ²	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56
>	Velocidade do Vento (+ ou -)	km / h	1	1			1	ı	ı	1	1	1		1
۵	Densidade do ar	m^2/s	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Fa	Resistência aerodinâmica	kg	-	-	-	-	-	-	-	-	-	-	-	-
Fad	Fad Força de aderência - legal	kgf	8.500	9.350	11.900	8.500	9.350	11.900	8.500	9.350	11.900	8.500	9.350	11.900
œ	Resistência ao movimento	kg	8.499	9.349	11.899	8.499	9.349	11.899	8.499	9.349	11.899	8.499	9.349	11.899

Demonstrativo de cálculo da rampa (i -greide) vencido pelas CVC conforme o tipo de pavimento – Cenário V


						- 1-7.	F 73.0	00,	Ì	٧.				
						VOIVO	VOIND FINI 6X4 1 - 4UU CV - PESO TECNICO + Apolo	- 400 cv -	reso lec	:nico + Ap	OIO			
Ö	Dargmotrae Técnicae	3		Tritrem			Rodotrem			Bitrem		Ro	Romeu e Julieta	sta
oigia		5	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.
			natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo	natural	primário definitivo	definitivo
ഗ	Peso bruto total combinado	ţ	74	74	74	74	74	74	25	22	22	22	25	22
T	Torque máximo do motor	kgf x m	204	204	204	204	204	204	204	204	204	204	204	204
ల	Maior relação de redução na caixa de cambio		16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41
₽	Relação de redução no eixo traseiro (total)		7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21
路	Raio dinâmico do pneu do eixo de tração 11 x 22	٤	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
ᅩ	Rendimento energético	%	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06	%06
>	Velocidade	Km / h												
ᡅ	Somatório dos pesos incidentes nos eixos de tração	kg	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000
n	Coeficiente de atrito pneu x solo		0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70
Ľ	Torque na roda	kgfm	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723
Æ	Força disponível na roda	kgf	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713
RRs	Coeficiente de resistência ao rolamento	kg/t	32	18	6	35	18	6	35	18	6	35	18	6
፳	Resistência ao rolamento	kg	2.590	1.332	999	2.590	1.332	999	1.995	1.026	513	1.995	1.026	513
-	greide (rampa)	%	29,5%	33,4%	23,7%	29,5%	33,4%	23,7%	39,4%	43,9%	31,0%	39,4%	43,9%	31,0%
密	Resistência de rampa	kg	21.841	24.691	17.533	21.841	24.691	17.533	22.436	24.997	17.686	22.436	24.997	17.686
Ca	Coeficiente aerodinâmico		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Αŧ	Área frontal	m^2	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56
^	Velocidade do Vento (+ ou -)	km / h	-	-	-	-	-	-	-	-	-	-	-	-
۵	Densidade do ar	m^2/s	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Fa	Resistência aerodinâmica	kg	•	•	-		•	-		-	-		-	-
Fad	Fad Força de aderência - Peso legal + Apoio	kgf	24.432	26.024	18.200	24.432	26.024	18.200	24.432	26.024	18.200	24.432	26.024	18.200
~	Resistência ao movimento	Ā	24.431	26.023	18.199	24.431	26.023	18.199	24.431	26.023	18.199	24.431	26.023	18.199

Demonstrativo de cálculo da rampa (i -greide) vencido pelas CVC conforme o tipo de pavimento – Cenário V

						>	Volvo EM 6VA T ADD ov. Boco Tácnico	100V	0000	Tóppigo				
				:		>	VO INI I ONIC		CV - 1 GSO	יברוויים		(
מוסול	Parâmetros Técnicos	<u>E</u>		Tritrem			Rodotrem			Bitrem		&	Romeu e Julieta	ita
		5	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.	Leito	Revest.	Revest.
			natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo	natural	primário	definitivo
ტ	Peso bruto total combinado	÷	74	74	74	74	74	74	25	25	25	25	25	22
T	Torque máximo do motor	kgf x m	204	204	204	204	204	204	204	204	204	204	204	204
ပ္	Maior relação de redução na caixa de cambio		16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41	16,41
ਰੁ	Relação de redução no eixo traseiro (total)		7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21
Rd	Raio dinâmico do pneu do eixo de tração 11 x 22	٤	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
ᅩ	Rendimento energético	%	%06	%06	%06	%06	%06	%06	%06	%06	% 06	%06	%06	%06
>	Velocidade	Km / h		•	•					•	-			-
Д	Somatório dos pesos incidentes nos eixos de tração	kg	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000	26.000
n	Coeficiente de atrito pneu x solo		0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70	0,50	0,55	0,70
Ľ	Torque na roda	kgfm	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723	21.723
FR	Força disponível na roda	kgf	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713	39.713
RRs	Coeficiente de resistência ao rolamento	kg / t	32	18	6	32	18	6	32	18	6	32	18	6
ፚ	Resistência ao rolamento	kg	2.590	1.332	999	2.590	1.332	999	1.995	1.026	513	1.995	1.026	513
	greide	%	14,1%	17,5%	23,7%	14,1%	17,5%	23,7%	19,3%	23,3%	31,0%	19,3%	23,3%	31,0%
密	Resistência de rampa	kg	10.409	12.967	17.533	10.409	12.967	17.533	11.004	13.273	17.686	11.004	13.273	17.686
S	Coeficiente aerodinâmico		0,85	0,85	98'0	0,85	0,85	0,85	0,85	0,85	0,85	98'0	0,85	0,85
Αţ	Área frontal	m ²	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56	7,56
>	Velocidade do Vento (+ ou -)	km / h	-	-	-	-	-	-	-	-	-	-	-	-
Ω	Densidade do ar	m^2/s	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Fa	Resistência aerodinâmica	kg	-	-	-	-	-	-	-	-	-	-	-	-
Fad	Fad Força de aderência - legal	kgf	13.000	14.300	18.200	13.000	14.300	18.200	13.000	14.300	18.200	13.000	14.300	18.200
œ	Resistência ao movimento	kg	12.999	14.299	18.199	12.999	14.299	18.199	12.999	14.299	18.199	12.999	14.299	18.199

ANEXO IV - Exemplo de Planejamento Operacional – Projeto Vila Preta

Planejamento Operacional – Vila Preta

ANEXO V - Custo padrão de adequação de estradas e Tabela de Preços - Construção e Manutenção Estradas

Cálculo do custo padrão de adequação de estradas do grau de dificuldade 8 para o grau de dificuldade 1 válido para o Cenário I

Operações:

- Abertura e regularização do leito de estrada com saídas de água e compactação 8 metros: R\$ 6,60 / m x 1000 m + R\$ 1.137,4 (reajuste de tabela) = R\$ 7.798,13 / km
- Abertura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 5 metros: R\$ 2,27 / m x 1000 m = R\$ 2.274,00 / km
- Rolo compactador corrugado R\$ 1,11 / m x 1.000 m : R\$ 1.110,00 / km
- Carregamento de cascalho com escavadeira; (SE-CM-CARGMAT): distância média de 20 km, camada de 20 cm: R\$ 10,60 / m x 1000 = R\$ 10.060,00 / km
- Revestimento primário com cascalho, distribuído e compactado R\$ 4,95/m x
 1000 m: R\$ 4.905,80 / km
- Transporte de Máguina (R\$ 5,09 / km x 400 km): R\$ 2.036,00 / km

Fator de serpentina do Grau 8 para o grau 1 = 3,2

Custo total da adequação: R\$ 7.798,13 + R\$ 10.060,00 + R\$ 4.905,80 + (R\$ 10.060,00 + R\$ 4.905,80 + R\$ 1.110,00 + R\$ 2.274) * 3,2 + R\$ 2.036,00 = R\$ 83.519,37 / km ou R\$ 83,50 / m

Preços em metros lineares		
Abertura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 5 metros	R\$	2,27
Abertura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 6 metros	R\$	2,73
Abertura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 7 metros	R\$	3,27
Abertura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 8 metros	R\$	3,90
Uso Trator de Esteira e Motoniveladora, saídas de água (SE-AE-ABESTPAT)	Ιζψ	3,90
Reaberura com trator de esteira do leito de estrada com trator esteira 5 metros	R\$	1,88
Reaberura com trator de esteira do leito de estrada com trator esteira 6 metros	R\$	2,27
Reaberura com trator de esteira do leito de estrada com trator esteira 7 metros	R\$	2,73
Reaberura com trator de esteira do leito de estrada com trator esteira 8 metros	R\$	3,26
Uso de Trator de Esteira	Ιζψ	3,20
Reaberura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 5 metros	R\$	2,09
Reaberura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 6 metros	R\$	2,51
Reaberura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 7 metros	R\$	3,01
Reaberura e regularização do leito de estrada com saídas de água, trator esteira e patrola, 8 metros	R\$	3,58
Uso Trator de Esteira e Motoniveladora, saídas de água (SE-AE-ABESTEIR)	ГФ	3,36
Abertura e regularização do leito de estrada com saídas de água e compactação; 5 metros	R\$	3,68
Abertura e regularização do leito de estrada com saídas de água e compactação; 6 metros	R\$	4,42
Abertura e regularização do leito de estrada com saídas de água e compactação; 7 metros	R\$	5,31
Abertura e regularização do leito de estrada com saídas de água e compactação; 8 metros	R\$	
Esteira / Motoniveladora / Rolo Compactador / Pipa (SE-AE-ABESTRAD)	ĽΦ	6,66
	D¢	4.00
Abertura e regularização do leito de estrada, com saídas de água c/ compactação e destocagem; 5 metros	R\$	4,82
Abertura e regularização do leito de estrada, com saídas de água c/ compactação e destocagem; 6 metros	R\$	5,53
Abertura e regularização do leito de estrada, com saídas de água c/ compactação e destocagem; 7 metros	R\$	6,62
Abertura e regularização do leito de estrada, com saídas de água c/ compactação e destocagem; 8 metros	R\$	7,98
Esteira / Motoniveladora / Rolo Compactador / Pipa		0.00
Abertura e regularização de Estradas com limpezas de saídas de água, trator de esteira, 5 metros	R\$	2,09
Abertura e regularização de Estradas com limpezas de saídas de água, trator de esteira, 6 metros	R\$	2,51
Abertura e regularização de Estradas com limpezas de saídas de água, trator de esteira, 7 metros	R\$	3,01
Abertura e regularização de Estradas com limpezas de saídas de água, trator de esteira, 8 metros	R\$	3,58
Uso de trator de esteira (SE-AE-ABESTEIR)	 	0.40
Abertura e regularização de Ramal c/ destocagem, trator de esteira, 5 metros	R\$	2,49
Abertura e regularização de Ramal c/ destocagem, trator de esteira, 6 metros	R\$	2,87
Abertura e regularização de Ramal c/ destocagem, trator de esteira, 7 metros	R\$	3,44
Abertura e regularização de Ramal c/ destocagem, trator de esteira, 8 metros	R\$	4,13
Uso de trator de esteira, para destoca (SE-AE-ARAMAL)	├	0.07
Regularização de Estradas/Divisoras/Ramais com motoniveladora (Acabamento) 5 metros Regularização de Estradas/Divisoras/Ramais com motoniveladora (Acabamento) 6 metros	R\$	0,37
• ,	R\$	0,44
Regularização de Estradas/Divisoras/Ramais com motoniveladora (Acabamento) 7 metros	R\$	0,53
Regularização de Estradas/Divisoras/Ramais com motoniveladora (Acabamento) 8 metros	R\$	0,63
Uso de motoniveladora (SE-AE-ABPATROL) Regularização de pista c/ motoniveladora em estradas cascalhadas sendo próprias ou municipais; 5 metros	 D	0.00
	R\$	0,38
Regularização de pista c/ motoniveladora em estradas cascalhadas sendo próprias ou municipais; 6 metros	R\$	0,45
Regularização de pista c/ motoniveladora em estradas cascalhadas sendo próprias ou municipais; 7 metros	R\$	0,60
Regularização de pista c/ motoniveladora em estradas cascalhadas sendo próprias ou municipais; 8 metros	R\$	0,74
Abertura e regularização de aceiros com roçadeiras; 5 metros	R\$	1,18
Abertura e regularização de aceiros com trator de esteira; 5 metros	R\$	1,27
Reabertura e regularização de aceiros com trator de esteira; 5 metros	R\$	0,98
Limpeza de aceiros com saída de água e tobogãs, com motoniveladora; 5 metros	R\$	0,74
Dreno cego (1,0h x 0,50l m)	R\$	14,02
Dreno revestido com tela de bidin (1,0h x 0,50l)	R\$	21,44
Construção de bueiros com alas em concreto e diâmetro de 0,40;	R\$	183,30
Construção de bueiros com alas em concreto e diâmetro de 0,60;	R\$	288,05
Construção de bueiros com alas em concreto e diâmetro de 0,80;	R\$	399,84
Construção de bueiros com alas em concreto e diâmetro de 1,00;	R\$	480,41
Construção de bueiros simples, c/ cabeceira pedra, diâmetro de 0,40;	R\$	145,15
Construção de bueiros simples, c/ cabeceira pedra, diâmetro de 0,60;	R\$	229,98
Construção de bueiros simples, c/ cabeceira pedra, diâmetro de 0,80;	R\$	317,88
Construção de bueiros simples, c/ cabeceira pedra, diâmetro de 1,00;	R\$	363,95
Sargetas de concreto, diâmetro de 0,40	R\$	27,07

Preços em metros quadrados		
Construção de ponte de madeira, 01 a 05 metros (Madeira fornecida pela Klabin)	R\$	440,33
Construção de ponte de madeira, 06 a 10 metros (Madeira fornecida pela Klabin)	R\$	762,14
Passagem molhada, com 5 m de largua e cabeceira com no mínimo 5 m de comprimento	R\$	251,59
até 10 metros	R\$	138,62
Reforma de Pontes, com substituição vigas longitudinais e troca assoalho e bica (Madeira fornecida pela Klabin) até 11 a 20 metros	R\$	216,59
Reforma de Pontes, com substituição vigas longitudinais e troca assoalho e bica (Madeira fornecida pela Klabin) até 21 metros acima	R\$	259,91
Reforma de Pontes, com substituição toras transversais, bica e guard-raid (Madeira Fornecida pela Klabin)	R\$	146,20
Preços em metros cúbicos		
Corte de talude para alargamento de pista s/transporte e sem rocha	R\$	3,03
Execução de aterros compactados com camadas de 0,50 m de espessura	R\$	3,22
Revestimento primário com cascalho, distribuído e compactado	R\$	4,91
Revestimento primário com cascalho, distribuído s/ compactação	R\$	4,15
Decapagem de cascalheira e remoção do material	R\$	6,32
Escavação de cascalho com trator de esteira ou escavadeira; (SE-SC-ESCCASC)	R\$	2,06
Escavação e carregamento de cascalho com escavadeira; (SE-CM-CARRESC)	R\$	3,75
Carregamento de cascalho com escavadeira; (SE-CM-CARGMAT)	R\$	2,00
Carregamento de cascalho com pá-carregadeira;	R\$	2,00
Detonação de material pétreo	R\$	6,68
Preço por hora	ΤΨ	0,00
Pá-carregadeira; (SE-CM-CARREGAD)	R\$	107,17
Retroescavadeira; (SE-AE-RETROESC)	R\$	69,21
Escavadeira Hidráulica; (SE-AE-ESCHIDRA)	R\$	157,38
Escavadeira Hidráulica; (SE-AE-ESCHIDRA) Tipo VOLVO 140 ou CAT 312	R\$	134,61
Trator de esteira com potência tipo CAT D5 ou KOMATSU D50; (SE-AE-ESTEIRA)	R\$	134,60
Trator de esteira com potência tipo CAT D6 ou KOMATSU D65;	R\$	164,50
Motoniveladora; (SE-AE-MOTNIVEL)	R\$	121,18
Rolo compactador liso; (SE-AE-ROLOCOMP)	R\$	71,84
Rolo compactador corrugado;	R\$	73,99
Caminhão Pipa (SE-TM-PIPAHORA)	R\$	70,39
Serviços Braçais (hora / homem) (SE-ME-SERVBRAC)	R\$	9,42
Serviços Técnico (topografo,tecnico, com enfase em estradas) (homem / hora)	R\$	66,80
Serviços Engenheiro Civil (Com enfase em estradas) (homem/ hora)	R\$	97,63
Preço por Km rodado		
Caminhão basculante 6x4; (SE-DM-BASC6X4)	R\$	4,22
Caminhão Pipa (SE-TM-PIPAKM)	R\$	3,41
Caminhão prancha p/ transporte de máquinas; (SE-FM-PRANCHA)	R\$	5,09
Caminhão Grua / Munck (SE-FM-CAMGRUA)	R\$	4,06
Pick-up (Serviços diversos) Instalação e substituição de placas / limpezas (SE-TM-PICK-UP)	R\$	1,49
Transporte de maquina com caçamba (SE-FM-BASC6X4)	R\$	4,22
Preços por unidade		
Execução de caixas de contenção	R\$	68,23
Escavação da caixa para depósito sólidos / água (SE-DE-CONCXCON)		
Construção de tobogãs (Camalhão)) (7,0 l x 2,0 c x 0,40 h)	R\$	161,48
Lombada para diminuir a velocidade da água (SE-DE-CAMALHAO)		
0 1 7 1 (1 (0 50) 0 50) (41 1 : 6 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R\$	426,41
Construção de mata-burro (3,50 l x 2,50 c) (Madeira fornecida pela Klabin)	Ιζψ	720,71

ANEXO VI - Dados das CVC, premissas operacionais e cálculo do frete

Dados das CVCs utilizadas no cálculo do frete - Cenários I, II e V

		Valores			CV	С	
Informações Técnicas	UM	Comuns	Impostos	TT	RD	ВТ	J
Cavalo Mecânico	Marca			Volvo	Volvo	Volvo	Volvo
	Modelo			FM6X4T	FM6X4T	FM6X4 T	FM6X4 T
	Potência			400	400	400	400
	R\$			350.000	350.000	350.000	350.000
	t			9,05	9,05	9,05	9,05
Implementos	Marca		Preço sem ICMS	Noma	Noma	Noma	Noma
	Modelo			Florestal	Florestal	Floresta I	Floresta I
	R\$			188.602	130.000	111.886	80.392
	t			16,09	17,61	10,95	11,05
PBTC	t			74,00	74,00	57,00	57,00
Tara	t .			25,14	26,66	20,00	20,10
Peso líquido - legal	t			48,87	47,34	37,01	36,90
Custo total de aquisição COM pneus, entregue, com impostos	R\$			538.602	480.000	461.886	430.392
Custo total de aquisição SEM pneus (item de desgaste)	R\$			491.342	432.740	425.746	394.252
ICMS incluso no preço do caminhão				-	-	-	-
Quilometragem inicial (km)	km			0	0	0	0
Valor residual após período de propriedade		00		72%	72%	72%	72%
Vida útil (meses) Vida útil (km) - o que completar antes	meses km	36		36 258.332	36 256.063	36 263.229	36 265.922
IPVA (% ao ano - cavalo apenas)	%		1,5%	5.250	5.250	5.250	5.250
Licenciamento anual + seguro obrigatório	70		1,070	0.200	0.200	0.200	0.200
(responsabilidade civil) + Licenças especiais de trânsito (R\$/ano)	R\$/ano	2.000		2.000	2.000	2.000	2.000
Seguro do casco (% do total)	%		1,5%	8.079	7.200	6.928	6.456
Período de depreciação fiscal	meses	60		60	60	60	60
Valor anual do Investimento (para cálculo de seguro e IPVA)							
1	100,0%			538.602	480.000	461.886	430.392
2	96,9%			522.109	465.301	447.741	417.212
3	93,9%			505.615	450.602	433.597	404.032
4	90,8%			489.121	435.903	419.452	390.852
5	87,8%			472.627	421.203	405.308	377.672
6	84,7%			456.134	406.504	391.164	364.492
7	81,6%			439.640	391.805	377.019	351.312
8	78,6%			423.146	377.106	362.875	338.132
9	75,5%			406.652	362.407	348.730	324.952
10	72,4%			390.159	347.708	334.586	311.772
Rasa monetária referente a jun/2010	72,4%			390.159	347.708	334.586	311.772

Dados das CVCs utilizadas no cálculo do frete - Cenários I, II e V

		Valores			C\	/C	
Informações Técnicas	UM	Comuns	Impostos	TT	RD	ВТ	RJ
Pneus							
Cavalo Mecânico – Direção	Unid			2	2	2	2
Cavalo Mecânico – Tração	Unid.			8	8	8	8
Implemento	Unid.			24	24	16	16
Total	Unid.			34	34	26	26
Preço Unitário + Câmara e acessórios	R\$	1.390	17%	1.390	1.390	1.390	1.390
Recapagens	Unid.	1,5		1,5	1,5	1,5	1,5
Custo recapagem	R\$	490,0	17%	490	490	490	490
Primeira Vida Útil - Cavalo – Asfalto	km	50.000		50.000	50.000	50.000	50.000
Primeira Vida Útil - Implemento – Asfalto	km	70.000		70.000	70.000	70.000	70.000
Vida útil recapagem - Cavalo - Asfalto	km	25.000		25.000	25.000	25.000	25.000
Vida útil recapagem - Implemento - Asfalto	km	50.000		50.000	50.000	50.000	50.000
Primeira Vida Útil - Cavalo - Terra/cascalho	km	25.000		25.000	25.000	25.000	25.000
Primeira Vida Útil - Implemento - Terra/cascalho	km	40.000		40.000	40.000	40.000	40.000
Vida útil recapagem - Cavalo - Terra/cascalho	km	15.000		15.000	15.000	15.000	15.000
Vida útil recapagem - Implemento - Terra/cascalho	km	30.000		30.000	30.000	30.000	30.000
Custo de Pneus - Cavalo – Asfalto	R\$/km			0,17	0,17	0,17	0,17
Custo de Pneus - Implemento – Asfalto	R\$/km			0,35	0,35	0,23	0,23
Custo de Pneus - Cavalo - Terra/cascalho	R\$/km			0,31	0,31	0,31	0,31
Custo de Pneus - Implemento - Terra/cascalho	R\$/km			0,60	0,60	0,40	0,40
Custo específico – Asfalto	R\$/km			0,52	0,52	0,40	0,40
Custo específico - Terra/cascalho	R\$/km			0,91	0,91	0,71	0,71
Combustível e Lubrificantes							
Custo do diesel (litro)	R\$/I	1,90	17%	1,90	1,90	1,90	1,90
Consumo, ida e retorno - Asfalto	km/l			1,20	1,20	1,29	1,29
Consumo, ida e retorno - Terra	km/l			1,05	1,05	1,10	1,10
Combustível - Custo específico – Asfalto	R\$/km			1,58	1,58	1,47	1,47
Combustível - Custo específico - Terra	R\$/km			1,81	1,81	1,73	1,73
Óleo do Motor	R\$/I			3,5	3,5	3,5	3,5
Capacidade do cárter	1			35,0	35,0	35,0	35,0
Remonte (consumo entre trocas) % em relação ao combustível	%			40%	40%	40%	40%
Intervalo entre trocas	km			15.000	15.000	15.000	15.000
Óleo do Motor - Custo específico – Asfalto	R\$/km			0,01	0,01	0,01	0,01
Óleo do Motor - Custo específico – Terra	R\$/km			0,01	0,01	0,01	0,01
Óleo Transmissão - Custo do óleo	R\$/I			6	6	6	6
capacidade da caixa	1			23	23	23	23
Capacidade no cubo do eixo	1			-	-	-	-
Intervalo entre trocas	km			60.000	60.000	60.000	60.000
Óleo Transmissão - Custo específico - Asfalto	R\$/km			0,002	0,002	0,002	0,002
Óleo Transmissão - Custo específico – Terra	R\$/km			0,002	0,002	0,002	0,002
Lavagem e Lubrificação	R\$			200	200	200	200
Intervalo entre operações – Asfalto	km			4.000	4.000	4.000	4.000
Intervalo entre operações – Terra	km			3.000	3.000	3.000	3.000
Lavagem e Lubrificação - Custo específico - Asfalto	R\$/km			0,050	0,050	0,050	0,050
Lavagem e Lubrificação - Custo específico - Terra	R\$/km			0,067	0,067	0,067	0,067

Premissas operacionais e impostos adotadas para o cálculo do frete:Cenários I, II e V

Premissas Operacionais	UM	Valores		CV	'C	
Tremissas Operacionais	Olvi	Comuns	TT	RD	ВТ	RJ
Jornada de Trabalho						
Turnos	Unit.	2	2	2	2	2
Dias/ano	dias	365	365	365	365	365
Motoristas/caminhão + Reserva	Unit.		3,6	3,6	3,6	3,6
Jornada de Trabalho	h/dia	8	8	8	8	8
Horas extras/dia	h	2	2	2	2	2
Intervalo/refeição	h/tur/di a	2	2	2	2	2
Horas disponíveis/mês	h		608	608	608	608
Eficiência Operacional						
Disponibilidade Mecânica	%	95%	95%	95%	95%	95%
Disponibilidade Operacional	%	84%	84%	84%	84%	84%
Eficiência Operacional	%	80%	80%	80%	80%	80%
Custo de mão-de-obra						
Salário Motorista	R\$/mês	1.800	1.800	1.800	1.800	1.800
Encargos	%	91%	91%	91%	91%	91%
Custo mensal/motorista	R\$/mês	3.435	3.435	3.435	3.435	3.435
Custos Administrativos						
Supervisor Contador + Secretária + Aluguel + Outros	R\$/mês	14.000				
Frota média		15				
Custo Adm. Unitário			933	933	933	933
Percurso médio	km					
Asfalto	%	70%	70%	70%	70%	70%
Terra	%	30%	30%	30%	30%	30%
Manutenção	D¢	220 250	220 250	220 250	220 250	220.250
Valor aquisição Veículo Original	R\$	338.250	338.250	338.250	338.250	338.250
Mercedes Benz Axor 3340 K 6x4 + Tritrem Cana	R\$	120.000	120.000	120.000	120.000	120.000
	R\$	458.250	458.250	458.250	458.250	458.250
Equação original	b0	0,41450	0,4145010	0,4145010	0,4145010	0,4145010
	b1	0,0000018	0,0000018	0,0000018	0,0000018	0,0000018
Equação original - menos pneus (0,4145010)	b0	-	0,0000001	0,0000001	0,0000001	0,0000001
5	b1	0,0000018	0,0000018	0,0000018	0,0000018	0,0000018
Fator de correção para o Veículo atual			1,18	1,05	1,01	0,94
Equação corrigida para o Veículo atual	b0		0,0000001	0,0000001	0,000001	0,0000001
	b1		0,0000021	0,0000019	0,0000018	0,0000017
Fator de correção de Manutenação para o revestimento primário		1,12	1,12	1,12	1,12	1,12
Asfalto	%	70%	70%	70%	70%	70%
Adicional de Manutenção no revestimento primário	%	40%	40%	40%	40%	40%
Equação corrigida para o Veículo atual no	b0		0,0000001	0,0000001	0,0000001	0,0000001
revestimento primário			,	·		
Custo Médio de Manutenção	b1 R\$/km		0,0000024 0,305	0,0000021 0,278	0,0000020 0,263	0,0000019
· · · · · · · · · · · · · · · · · · ·				0,278		
Custo Final de Manutenção Impostos	R\$/km		0,609	0,556	0,527	0,489
ISS	%	2,00%	2,00%	2,00%	2,00%	2,00%
ICMS	%	0,00%	0,00%	0,00%	0,00%	0,00%
PIS/COFINS	%	4,75%	4,75%	4,75%	4,75%	4,75%
CSLL	%	9,00%	9,00%	9,00%	9,00%	9,00%
IR .	%	25,00%	25,00%	25,00%	25,00%	
Lucro	70	25,00%	20,00%	25,00%	25,00%	25,00%
Sobre Custo Fixo + Variável	%	8,00%				
Page manetéria referente a jun/2010		-,0070				

Cálculo do custo do frete para a CVC Tritrem no Cenário 1 para uma distância média de 50,0 km, com base em valores monetários de junho de 2010.

Custo Fixo Mensal (CF) em R\$/mês:

Mão-de-obra: (Mo) = $3.435 \times 3,6 = R$ \$ 12.278,6Depreciação (De) = $(491.342 - 491.342 \times 0,72)/36 = R$ \$ 3.761,6Seguro-Licenciamento (SL) = (5.250 + 2000 + 8.079)/12 = R\$ 1.277,42Custos Administrativos (CA) = R\$ 933,33Custo de Capital % aa (Cfn) = $(491.342 \times 0,08)/12 =$

= R\$ 3.275,62 Sub-total CF = Mo + De + SL + Cfn + CA = R\$ 21.526,63

Custo Variável Mensal (CV) para 12,5 km, em R\$/mês

Pneus (Pn) = $0.52 \times 5.126 + 0.91 \times 2.220 = R\$ 4.672,64$

Diesel (Comb) = $1,47 \times 5.126 + 1,73 \times 2.220 = R\$ 11.383,82$

Lubrificantes (Lub) = $5.126 \times (0.01 + 0.002) + 2.220 \times (0.01 + 0.002) =$

= R\$ 101,12

Lavagem (Lv) = $5.126 \times 0.05 + 2.220 \times 0.067 = R$ \$ 404.27

Manutenção (Man) = 7.346.85 x 0,306 = R\$ 2.389,80

Sub-total CV = Pn + Comb + Lub + Lv + Man = R\$ 18.951,66

CF + CV = R\$ 40.478,28 / mês Lucro (8%) = R\$ 3.238,26 / mês Sub-total (CF + CV + Lucro) = R\$ 43.716,55 / mês

Impostos R\$/mês

ICMS (diferido 0%) = R\$ 0 CSLL (9%) = $3.238,26 \times 0.09 = R$ 291,44$ IR (25%) = $3.238,26 \times 0.25 = R$ 809,57$ PIS/COFINS (4,75%) = ((43.716,55 + 809,57+ 291,44)/1-0,0475) – (43.716,55 + 809,57+ 291,44)) = R\$ 2.235,00

ISS
$$(2,00\%) = ((43.716,55 + 809,57 + 291,44)/1-0,02) - (43.716,55 + 809,57 + 291,44)) = R$ 914,64$$

Custo total = R\$ 47.967,20 / mês

Produção = 4.487 t / mês

Custo/t = 47.967,20/ 4.487 = R\$ 10,69 / t

Dados das CVCs utilizadas no cálculo do frete - Cenário III

Informações Técnicas	UM	Valores	Impostos		CV	'C	
mornações recincas	Olvi	Comuns	impostos	TT	RD	ВТ	RJ
Cavalo Mecânico	Marca			Volvo	Volvo	Volvo	Volvo
	Modelo			FM6X4T	FM6X4T	FM6X4 T	FM6X4 T
	Potência			400	400	400	400
	R\$			350.000	350.000	350.000	350.000
	t			9,05	9,05	9,05	9,05
	,		Preço	0,00			
Implementos	Marca		sem	Noma	Noma	Noma	Noma
•			ICMS				
	Modelo			Florestal	Florestal	Floresta	Floresta
	R\$			188.602	130.000	111.886	80.392
	t			16,09	17,61	10,95	11,05
PBTC	t			74,00	74,00	57,00	57,00
Tara	t			25,14	26,66	20,00	20,10
Peso líquido - legal	t			48,87	47,34	37,01	36,90
Custo total de aquisição COM pneus, entregue, com							
impostos	R\$			538.602	480.000	461.886	430.392
Custo total de aquisição SEM pneus (item de							
desgaste)	R\$			491.342	432.740	425.746	394.252
ICMS incluso no preço do caminhão				-	-	-	-
Quilometragem inicial (km)	km			0	0	0	0
Valor residual após período de propriedade				72%	72%	72%	72%
Vida útil (meses)	meses	36		36	36	36	36
Vida útil (km) - o que completar antes	km			258.332	256.063	263.229	265.922
IPVA (% ao ano - cavalo apenas)	%		1,5%	5.250	5.250	5.250	5.250
Licenciamento anual + seguro obrigatório							
(responsabilidade civil) + Licenças especiais de trânsito (R\$/ano)	R\$/ano	2.000		2.000	2.000	2.000	2.000
Seguro do casco (% do total)	%		1,5%	8.079	7.200	6.928	6.456
Período de depreciação fiscal	meses	60		60	60	60	60
Valor anual do Investimento (para cálculo de seguro							
e IPVA)							
1	100,0%			538.602	480.000	461.886	430.392
2	96,9%			522.109	465.301	447.741	417.212
3	93,9%			505.615	450.602	433.597	404.032
4	90,8%			489.121	435.903	419.452	390.852
5	87,8%			472.627	421.203	405.308	377.672
6	84,7%			456.134	406.504	391.164	364.492
7	81,6%			439.640	391.805	377.019	351.312
8	78,6%			423.146	377.106	362.875	338.132
9	75,5%			406.652	362.407	348.730	324.952
10	72,4%			390.159	347.708	334.586	311.772
Rase monetária referente a jun/2010	72,4%			390.159	347.708	334.586	311.772

Dados das CVCs utilizadas no cálculo do frete - Cenário III

		Valores			CV	'C	
Informações Técnicas	UM	Comuns	Impostos	TT	RD	BT	RJ
Pneus							
Cavalo Mecânico - Direção	Unid.			2	2	2	2
Cavalo Mecânico - Tração	Unid.			8	8	8	8
Implemento	Unid.			24	24	16	16
Total	Unid.			34	34	26	26
Preço Unitário + Câmara e acessórios	R\$	1.390	17%	1.390	1.390	1.390	1.390
Recapagens	Unid.	1,5		1,5	1,5	1,5	1,5
Custo recapagem	R\$	539	17%	539	539	539	539
Primeira Vida Útil - Cavalo - Asfalto	km	55.000		55.000	55.000	55.000	55.000
Primeira Vida Útil - Implemento - Asfalto	km	77.000		77.000	77.000	77.000	77.000
Vida útil recapagem - Cavalo - Asfalto	km	27.500		27.500	27.500	27.500	27.500
Vida útil recapagem - Implemento - Asfalto	km	55.000		55.000	55.000	55.000	55.000
Primeira Vida Útil - Cavalo - Terra/cascalho	km	27.500		27.500	27.500	27.500	27.500
Primeira Vida Útil - Implemento - Terra/cascalho	km	44.000		44.000	44.000	44.000	44.000
Vida útil recapagem - Cavalo - Terra/cascalho	km	16.500		16.500	16.500	16.500	16.500
Vida útil recapagem - Implemento - Terra/cascalho	km	33.000		33.000	33.000	33.000	33.000
Custo de Pneus - Cavalo - Asfalto	R\$/km			0,15	0,15	0,15	0,15
Custo de Pneus - Implemento - Asfalto	R\$/km			0,33	0,33	0,22	0,22
Custo de Pneus - Cavalo - Terra/cascalho	R\$/km			0,29	0,29	0,29	0,29
Custo de Pneus - Implemento - Terra/cascalho	R\$/km			0,56	0,56	0,38	0,38
Custo específico - Asfalto	R\$/km			0,48	0,48	0,37	0,37
Custo específico - Terra/cascalho	R\$/km			0,85	0,85	0,67	0,67
Combustível e Lubrificantes							
Custo do diesel (litro)	R\$/I	1,90	17%	1,90	1,90	1,90	1,90
Consumo, ida e retorno - Asfalto	km/l			1,20	1,20	1,29	1,29
Consumo, ida e retorno - Terra	km/l			1,10	1,10	1,16	1,16
Combustível - Custo específico - Asfalto	R\$/km			1,58	1,58	1,47	1,47
Combustível - Custo específico - Terra	R\$/km			1,72	1,72	1,65	1,65
Óleo do Motor	R\$/I			3,5	3,5	3,5	3,5
Capacidade do cárter	1			35,0	35,0	35,0	35,0
Remonte (consumo entre trocas) % em relação ao combustível	%			40%	40%	40%	40%
Intervalo entre trocas	km			15.000	15.000	15.000	15.000
Óleo do Motor - Custo específico - Asfalto	R\$/km			0,01	0,01	0,01	0,01
Óleo do Motor - Custo específico - Terra	R\$/km			0,01	0,01	0,01	0,01
Óleo Transmissão - Custo do óleo	R\$/I			6	6	6	6
capacidade da caixa	I			23	23	23	23
Capacidade no cubo do eixo	I			-	-	-	-
Intervalo entre trocas	km			60.000	60.000	60.000	60.000
Óleo Transmissão - Custo específico - Asfalto	R\$/km			0,002	0,002	0,002	0,002
Óleo Transmissão - Custo específico - Terra	R\$/km			0,002	0,002	0,002	0,002
Lavagem e Lubrificação	R\$			200	200	200	200
Intervalo entre operações - Asfalto	km			4.000	4.000	4.000	4.000
Intervalo entre operações - Terra	km			3.000	3.000	3.000	3.000
Lavagem e Lubrificação - Custo específico - Asfalto	R\$/km			0,050	0,050	0,050	0,050
Lavagem e Lubrificação - Custo específico - Terra	R\$/km			0,067	0,067	0,067	0,067

Premissas operacionais e impostos adotadas para o cálculo do frete: Cenário III

Premissas Operacionais	UM	Valores		C/	/C	
Fremissas Operacionais	Olvi	Comuns	TT	RD	ВТ	RJ
a de Trabalho						
	Unit.	2	2	2	2	2
0	dias	365	365	365	365	365
tas/caminhão + Reserva	Unit.		3,6	3,6	3,6	3,6
a de Trabalho	h/dia	8	8	8	8	8
extras/dia	h	2	2	2	2	2
o/refeição	h/tur/dia	2	2	2	2	2
lisponíveis/mês	h		608	608	608	608
cia Operacional						
bilidade Mecânica	%	95%	95%	95%	95%	95%
bilidade Operacional	%	84%	84%	84%	84%	84%
cia Operacional	%	80%	80%	80%	80%	80%
de mão-de-obra	Da	4 000	4 000	4 000	4 000	4 000
Motorista	R\$/mês	1.800	1.800	1.800	1.800	1.800
OS	%	91%	91%	91%	91%	91%
nensal/motorista	R\$/mês	3.435	3.435	3.435	3.435	3.435
Administrativos	D¢/mêa	14.000				
sor + Contador + Secret. + Aluguel /Outros	R\$/mês	14.000				
édia		15	000	000	000	000
dm. Unitário so médio	km		933	933	933	933
so medio	%	70%	70%	70%	70%	70%
	%	30%	30%	30%	30%	30%
ınção	70	3070	30 70	30 /0	30 /0	30 70
quisição Veículo Original	R\$	338.250	338.250	338.250	338.250	338.250
es Benz Axor 3340 K 6x4 + Tritrem Cana	R\$	120.000	120.000	120.000	120.000	120.000
	R\$	458.250	458.250	458.250	458.250	458.250
o original	b0	0,4145010	0,4145010	0,4145010	0,4145010	0,4145010
o onga.	b1	0,0000018	0,0000018		0,0000018	0,0000018
o original - menos pneus (0,4145010)	b0		0,0000001	0,0000001	0,000001	0,0000001
o original - merios prieds (0,4 1450 10)	b1	0,0000018	0,0000001	0,0000001	0,000001	0,000001
e correção para o Veículo atual	D1	0,0000018			•	0,0000018
			1,18	1,05	1,01	
o corrigida para o Veículo atual	b0		0,0000001	0,0000001	0,0000001	0,0000001
le correção de Manutenação para o revestimento	b1		0,0000021	0,0000019	0,0000018	0,0000017
le correção de Mandieriação para o revestimento.		1,12	1,12	1,12	1,12	1,12
	%	70%	70%	70%	70%	70%
al de Manutenção no revestimento primário	%	40%	40%	40%	40%	40%
o corrigida para o Veículo atual no revestimento	b0		0,0000001	0,0000001	0,0000001	0,0000001
)						
	b1		0,0000024	0,0000021	0,0000020	0,0000019
Médio de Manutenção	R\$/km		0,292	0,258	0,255	0,240
inal de Manutenção	R\$/km		0,584	0,521	0,501	0,467
os	64	0.000/	0.0007	0.0001	0.000/	0.000
	%	2,00%	2,00%	2,00%	2,00%	2,00%
T1110	%	0,00%	0,00%	0,00%	0,00%	0,00%
FINS	%	4,75%	4,75%	4,75%	4,75%	4,75%
	%	9,00%	9,00%	9,00%	9,00%	9,00%
	%	25,00%	25,00%	25,00%	25,00%	25,00%
	1	1	l	l	Ī	l

Dados das CVCs utilizadas no cálculo do frete - Cenário IV

Informações Técnicas	UM	Valores	Impostos		CV	'C	
miormações rechicas	Olvi	Comuns	imposios	TT	RD	ВТ	RJ
Cavalo Mecânico	Marca			Volvo	Volvo	Volvo	Volvo
	Modelo			FM6X4T	FM6X4T	FM6X4T	FM6X4T
	Potência			400	400	400	400
	R\$			380.000	380.000	380.000	380.000
	t			9,05	9,05	9,05	9,05
Implementos	Marca		Preço sem ICMS	Noma	Noma	Noma	Noma
	Modelo			Florestal	Florestal	Florestal	Florestal
	R\$			188.602	130.000	111.886	80.392
	t			16,09	17,61	10,95	11,05
PBTC	t			74,00	74,00	57,00	57,00
Tara	t			25,14	26,66	20,00	20,10
Peso líquido - legal	t			48,87	47,34	37,01	36,90
Custo total de aquisição COM pneus, entregue, com impostos	R\$			568.602	510.000	491.886	460.392
Custo total de aquisição SEM pneus (item de desgaste)	R\$			521.342	462.740	455.746	424.252
ICMS incluso no preço do caminhão				64.600	64.600	64.600	64.600
Quilometragem inicial (km)	km			0	0	0	0
Valor residual após período de propriedade				72%	72%	72%	72%
Vida útil (meses)	meses	36		36	36	36	36
Vida útil (km) - o que completar antes	km			263.991	261.734	268.740	271.534
IPVA (% ao ano - cavalo apenas)	%		1,5%	5.700	5.700	5.700	5.700
Licenciamento anual + seguro obrigatório (responsabilidade civil) + Licenças especiais de trânsito (R\$/ano)	R\$/ano	2.000		2.000	2.000	2.000	2.000
Seguro do casco (% do total)	%		1,5%	8.529	7.650	7.378	6.906
Período de depreciação fiscal	meses	60		60	60	60	60
Valor anual do Investimento (para cálculo de seguro e IPVA)					00	00	
1	100,0%			568.602	510.000	491.886	460.392
2	96,9%			551.190	494.382	476.823	446.293
3	93,9%			533.778	478.764	461.760	432.194
4	90,8%			516.365	463.146	446.696	418.095
5	87,8%			498.953	447.529	431.633	403.997
6	84,7%			481.540	431.911	416.570	389.898
7	81,6%			464.128	416.293	401.507	375.799
8	78,6%			446.715	400.675	386.444	361.701
9	75,5%			429.303	385.057	371.381	347.602
10	72,4%			411.890	369.439	356.318	333.503
Poso monotório referente e jun/2010	72,4%			411.890	369.439	356.318	333.503

Dados das CVCs utilizadas no cálculo do frete - Cenário IV

lafama a Triania a	1.15.4	Valores			CV	'C	
Informações Técnicas	UM	Comuns	Impostos	TT	RD	ВТ	RJ
Pneus							
Cavalo Mecânico - Direção	Unid.			2	2	2	2
Cavalo Mecânico - Tração	Unid.			8	8	8	8
Implemento	Unid.			24	24	16	16
Total	Unid.			34	34	26	26
Preço Unitário + Câmara e acessórios	R\$	1.390	17%	1.390	1.390	1.390	1.390
Recapagens	Unid.	1,5		1,5	1,5	1,5	1,5
Custo recapagem	R\$	490,0	17%	490	490	490	490
Primeira Vida Útil - Cavalo - Asfalto	km	50.000		50.000	50.000	50.000	50.000
Primeira Vida Útil - Implemento - Asfalto	km	70.000		70.000	70.000	70.000	70.000
Vida útil recapagem - Cavalo - Asfalto	km	25.000		25.000	25.000	25.000	25.000
Vida útil recapagem - Implemento - Asfalto	km	50.000		50.000	50.000	50.000	50.000
Primeira Vida Útil - Cavalo - Terra/cascalho	km	25.000		25.000	25.000	25.000	25.000
Primeira Vida Útil - Implemento - Terra/cascalho	km	40.000		40.000	40.000	40.000	40.000
Vida útil recapagem - Cavalo - Terra/cascalho	km	15.000		15.000	15.000	15.000	15.000
Vida útil recapagem - Implemento - Terra/cascalho	km	30.000		30.000	30.000	30.000	30.000
Custo de Pneus - Cavalo - Asfalto	R\$/km			0,17	0,17	0,17	0,17
Custo de Pneus - Implemento - Asfalto	R\$/km			0,35	0,35	0,23	0,23
Custo de Pneus - Cavalo - Terra/cascalho	R\$/km			0,31	0,31	0,31	0,31
Custo de Pneus - Implemento - Terra/cascalho	R\$/km			0,60	0,60	0,40	0,40
Custo específico - Asfalto	R\$/km			0,52	0,52	0,40	0,40
Custo específico - Terra/cascalho	R\$/km			0,91	0,91	0,71	0,71
Combustível e Lubrificantes							
Custo do diesel (litro)	R\$/I	1,90	17%	1,90	1,90	1,90	1,90
Consumo, ida e retorno - Asfalto	km/l			1,10	1,10	1,18	1,18
Consumo, ida e retorno - Terra	km/l			0,96	0,96	1,01	1,01
Combustível - Custo específico - Asfalto	R\$/km			1,73	1,73	1,60	1,60
Combustível - Custo específico - Terra	R\$/km			1,97	1,97	1,88	1,88
Óleo do Motor	R\$/I			3,5	3,5	3,5	3,5
Capacidade do cárter	ı			35,0	35,0	35,0	35,0
Remonte (consumo entre trocas) % em relação ao combustível	%			40%	40%	40%	40%
Intervalo entre trocas	km			15.000	15.000	15.000	15.000
Óleo do Motor - Custo específico - Asfalto	R\$/km			0,01	0,01	0,01	0,01
Óleo do Motor - Custo específico - Terra	R\$/km			0,01	0,01	0,01	0,01
Óleo Transmissão - Custo do óleo	R\$/I			6	6	6	6
capacidade da caixa	I			23	23	23	23
Capacidade no cubo do eixo	I			-	-	-	-
Intervalo entre trocas	km			60.000	60.000	60.000	60.000
Óleo Transmissão - Custo específico - Asfalto	R\$/km			0,002	0,002	0,002	0,002
Óleo Transmissão - Custo específico - Terra	R\$/km			0,002	0,002	0,002	0,002
Lavagem e Lubrificação	R\$			200	200	200	200
Intervalo entre operações - Asfalto	km			4.000	4.000	4.000	4.000
Intervalo entre operações - Terra	km			3.000	3.000	3.000	3.000
Lavagem e Lubrificação - Custo específico - Asfalto	R\$/km			0,050	0,050	0,050	0,050
Lavagem e Lubrificação - Custo específico - Terra	R\$/km			0,067	0,067	0,067	0,067

Premissas operacionais e impostos adotadas para o cálculo do frete – Cenário IV

Premissas Operacionais	UM	Valores		C/	/C	
r remissas Operacionais	Olvi	Comuns	TT	RD	ВТ	RJ
a de Trabalho		_				
	Unit.	2	2	2	2	2
0	dias	365	365	365	365	365
tas/caminhão + Reserva	Unit.		3,6	3,6	3,6	3,6
a de Trabalho	h/dia	8	8	8	8	8
extras/dia	h	2	2	2	2	2
o/refeição	h/tur/dia	2	2	2	2	2
lisponíveis/mês	h		608	608	608	608
cia Operacional						
bilidade Mecânica	%	95%	95%	95%	95%	95%
bilidade Operacional	%	84%	84%	84%	84%	84%
ia Operacional	%	80%	80%	80%	80%	80%
nao-de-obra						
Motorista	R\$/mês	1.800	1.800	1.800	1.800	1.800
OS	%	91%	91%	91%	91%	91%
nensal/motorista	R\$/mês	3.435	3.435	3.435	3.435	3.435
Administrativos	50/ 0					
sor + Contador + Secretária + Aluguel + Outros	R\$/mês	14.000				
iédia		15				
dm. Unitário			933	933	933	933
so médio	km	700/	700/	700/	700/	700/
	%	70%	70%	70%	70%	70%
ınção	%	30%	30%	30%	30%	30%
ημίσο ημιsição Veículo Original	R\$	338.250	338.250	338.250	338.250	338.250
es Benz Axor 3340 K 6x4 + Tritrem Cana	R\$	120.000	120.000	120.000	120.000	120.000
CS BCHZ AXOL SOFO IX OXF 1 Thuchi Galla	R\$	458.250	458.250	458.250	458.250	458.250
o original	b0	0,41450	0,4145010	0,4145010	0,4145010	0,4145010
o original	b0 b1			0,0000018		
(0.4445040)		0,0000018	0,0000018		0,0000018	0,0000018
o original - menos pneus (0,4145010)	b0	-	0,0000001	0,0000001	0,0000001	0,0000001
	b1	0,0000018	0,0000018	0,0000018	0,0000018	0,0000018
e correção para o Veículo atual			1,18	1,05	1,01	0,94
o corrigida para o Veículo atual	b0		0,000001	0,0000001	0,0000001	0,0000001
	b1		0,0000021	0,0000019	0,0000018	0,0000017
e correção de Manutenação para o revestimento primário		1,12	1,12	1,12	1,12	1,12
	%	70%	70%	70%	70%	70%
al de Manutenção no revestimento primário	%	40%	40%	40%	40%	40%
o corrigida para o Veículo atual no revestimento primário	b0		0,0000001	0,0000001	0,0000001	0,0000001
3 · · · · · · · · · · · · · · · · · · ·	b1		0,0000024	0,0000021	0,0000020	0,0000019
	R\$/km		0,305	0,278	0,263	0,244
inal de Manutenção	R\$/km		0,609	0,556	0,527	0,489
os	Τζψ/ΚΙΤΙ		0,000	0,000	0,021	0,400
	%	2,00%	2,00%	2,00%	2,00%	2,00%
	%	0,00%	0,00%	0,00%	0,00%	0,00%
FINS	%	4,75%	4,75%	4,75%	4,75%	4,75%
	%	9,00%	9,00%	9,00%	9,00%	9,00%
	%	25,00%	25,00%	25,00%	25,00%	25,00%
	70	20,0070	20,0070	20,0070	20,0070	20,007
Custo Fixo + Variável	%	8,00%				

Demonstrativo de cálculo de custos e produção mensal do Tritrem para os cenários I, II e V.

17,5 22,5 12.279 12.279 3.762 3.762 1.277 1.277 933 933 3.276 3.276 21.527 21.527 4.79 5,10 5,99 6,37 101 95 3,34 3,14 6.200 5.829 3.552 4.294 1.073 1.298 2.260 2.732 5.867 7.093	Comuns Comuns 3.762 1.277 933 8%			27,5 12,279 3,762 1,277 1,277 2,36 6,76 6,76 6,76 6,76 6,76 6,76 6,76 1,96 2,96 2,96 2,96 2,96 3,45 6,45 6,45 6,46 6,46 6,46 6,46 6,46 6	32,5 1,2.79 3,762 1,2.77 1,2.77 3,2.76 5,71 7,14 85 2,80 5,5.00 5,5.00 5,5.00 1,6.74	37,5 1.2.79 3.762 1.277 21,527 6,01 7,52 81 2,66 4,943 6.068	42.5 1.2.79 3.762 1.2.77 1.2.77 2.5.32 6,32 7.90 7.90 7.90 7.7 2,53 4.704 6.545	77,5 11,277 1,277 1,277 21,527 6,62 6,62 6,62 7,33 2,42 4,487 6,678 6,678 6,678 6,678 7,109 7,10	2.55 1.2.79 3.762 1.2.77 3.762 21.527 2.3.76 6.93 8.66 8.66 7.0 2.31 4.290 7.373 7.373 7.373	12.279 3.762 1.277 933 3.276 21.527 7.23 9,04 67 67 7.73 5.398 5.398	62,5 1.2.279 1.2.27 1.2.77 93.3.276 2.1.527 7,54 9,43 65 65 65 8.068	12.279 3.762 1.277 933 933 21.527 7,84 9,81 62 2,04 3.789 8.378	21,57 1,279 3,762 1,277 1,277 21,527 21,527 8,15 10,19 60 1,96 1,96 8,65 8,65 8,65 8,65 8,65 8,65 8,65 8,6	77.5 3.762 3.762 1.277 21.527 21.527 8.45 10.57 5.845 10.57 5.89 8.921 6.226 6.226	82,5 12.279 1.277 1.277 933 3.276 21.527 2.527 2.65 10.95 56 1.83 3.394 9.166 6.396 6.396 2.770	87,5 92,5 12,279 12,279 3,762 3,762 1,277 1,277 1,277 1,277 3,327 3,276 21,527 21,527 9,06 9,37 1,74 1,71 3,279 3,173 9,384 9,608 6,706 6,706 8,379 3,473 9,384 9,608 6,706 6,706 8,379 3,473 9,384 9,608 6,706 6,706 8,379 3,473 9,370 3,473 9,370 3,473 9,370 3,473 9,370 3,473 9,537 3,473 9,538 3,473 9,538 3,473 9,737 3,473 9,738 3,473 9,738 3,473 9,738 3,473 9,738 3,473 9,739
Mão-de-Obra R\$/mês 12.279 12.277 12	12.279 3.762 1.277 933 8%	<u> </u>		27,5 12.279 3,762 1.277 933 3,276 21.527 5,40 6,76 90 2,96 5,500 4,952 3,456 1,496 1,496 3,456 1,496 1	3.762 3.762 1.277 933 3.276 2.1.527 5,71 7,14 85 2,80 5,507 5,500 5,500 3.866 1.674	37,5 12.279 3.762 1.277 9.33 3.276 21.527 6,01 7,52 81 2,66 4,943 6.068	42,5 12,279 3,762 1,277 1,277 2,1527 6,32 7,90 7,90 7,90 7,90 7,90 7,90 7,90 7,90		21,55 12,279 3,762 1,277 93,3,276 21,527 6,93 8,66 7,077 2,31 4,290 7,373 5,145	7,27 933 3,276 21,527 933 3,276 21,527 9,04 67 67 67 67 7,23 67 67 7,73 9,04 67 7,73 67 7,73 67 67 67 67 67 67 67 67 67 67 67 67 67	21,527 12,279 13,762 13,762 21,527 7,54 9,43 6,5 6,5 6,5 8,068 8,068	12.279 3.762 1.277 1.277 3.276 21.527 7,84 9,81 62 2.04 3.789 8.374 5.844	8,15 1,279 3,762 1,277 93,3,276 21,527 8,15 10,19 60 1,96 3,648 8,658 8,658 8,658 8,658 8,658			
Mão-de-Obra R\$/mēs 12.279 12.289 12.273 12.28 12.28 12.28 12.28 12.28 12.28 12.28 12.28 12.28	12.279 3.762 1.277 933 8%			12.279 3.762 1.277 93.3.276 21.527 2.96 6,76 9,0 2,96 5.500 4.952 3.456 1.496	12.279 3.762 933 3.276 21.527 5,71 7,14 85 2.80 5.207 5.540 3.866	12.279 3.762 1.277 1.277 33.276 21.527 6,01 7,52 81 2.66 4.943 6.068	12.279 3.762 1.277 1.277 21.527 6,32 7,90 7,90 7,90 7,90 7,90 7,90 7,90 7,90		12.279 3.762 1.277 933 3.276 21.527 6,93 8,66 7.0 2,31 4.290 7.373 5.145	12.279 3.762 1.277 21.527 7,23 9,04 67 2,21 4.109 7.735 5.398	12.279 3.762 1.277 933 3.276 21.527 7,54 9,43 65 65 2,12 3.943	3.762 21.527 3.276 21.527 7.84 9,81 62 2.04 3.789 8.374 5.844	12.279 3.762 1.277 1.277 21.527 21.527 8,15 10,19 60 1,96 3.648 8.658 8.658 8.658			
Mânde-de-Obra R\$/més 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.279 12.277 12.79 12.98 Macadame + Terra Rs/més Rs/més <th>12.279 3.762 1.277 1.277 8% 8%</th> <th></th> <th></th> <th>12.279 3.762 1.277 93.3.276 21.527 5,40 6,76 9,0 2,96 5,500 4,952 3,456 1,496 1,496 3,456 3,456 1,496</th> <th>12.279 3.762 1.277 1.277 3.276 2.1527 5,71 7,14 85 2.80 5.207 5.207 5.207 5.207 5.207 5.207 3.866</th> <th>3.762 1.277 1.277 933 3.276 21.527 6,01 7,52 81 81 2,66 4.943</th> <th>12.279 3.762 1.277 23.276 21.527 6,32 7,90 77 7,90 77 7,90 77 7,90 6,545 6,545 6,545</th> <th></th> <th>12.279 3.762 1.277 933 3.276 21.527 6.93 8.66 70 70 70 73.31</th> <th>3.762 1.277 1.277 21.527 21.527 7,23 9,04 67 67 2,21 4.109 7.735 5.398</th> <th>7.54 9.43 7.54 9.43 6.5 2.12 3.943 6.5 8.068</th> <th>7.279 3.762 1.277 3.276 2.527 7,84 9,81 62 2,04 3.789 8.374 5.844</th> <th>3.762 1.277 1.277 3.3.276 21.527 21.527 8.15 10,19 60 1.96 6.045</th> <th></th> <th></th> <th></th>	12.279 3.762 1.277 1.277 8% 8%			12.279 3.762 1.277 93.3.276 21.527 5,40 6,76 9,0 2,96 5,500 4,952 3,456 1,496 1,496 3,456 3,456 1,496	12.279 3.762 1.277 1.277 3.276 2.1527 5,71 7,14 85 2.80 5.207 5.207 5.207 5.207 5.207 5.207 3.866	3.762 1.277 1.277 933 3.276 21.527 6,01 7,52 81 81 2,66 4.943	12.279 3.762 1.277 23.276 21.527 6,32 7,90 77 7,90 77 7,90 77 7,90 6,545 6,545 6,545		12.279 3.762 1.277 933 3.276 21.527 6.93 8.66 70 70 70 73.31	3.762 1.277 1.277 21.527 21.527 7,23 9,04 67 67 2,21 4.109 7.735 5.398	7.54 9.43 7.54 9.43 6.5 2.12 3.943 6.5 8.068	7.279 3.762 1.277 3.276 2.527 7,84 9,81 62 2,04 3.789 8.374 5.844	3.762 1.277 1.277 3.3.276 21.527 21.527 8.15 10,19 60 1.96 6.045			
Depreciação R\$/mês 3.762 3.762 3.762 3.762 Seguro - Licenciamento R\$/mês 1.277 1.278 1.298	3.762 1.277 8 8 8 %			3.762 1.277 3.276 21.527 21.527 5.40 6,76 90 2.96 5.500 4.952 3.456 1.496	3.762 1.277 2.1527 2.1527 5,71 7,14 85 2,80 5,207 5,540 3.866 3.866	3.762 1.277 933 3.276 21.527 6,01 7,52 81 2,66 4.943	3.762 1.277 933 3.276 2.527 7,90 77 2,53 4.704 6.545		3.762 1.277 933 3.276 21.527 6,93 8,66 70 70 2,31 4,290 7.373 5.145	3.762 1.277 933 3.276 21.527 7,23 9,04 67 2,21 4.109 7.735 5.398	3.762 1.277 933 3.276 2.1527 7,54 9,43 65 65 2,12 3.943 8.068	3.762 1.277 933 3.276 2.527 7,84 9,81 62 2,04 3.789 8.374	3.762 1.277 3.276 21.527 21.527 10,19 60 1,96 3.648 8.658 6.042			
Seguro - Licenciamento R\$/mês 1.277 1.278 1.	1.2.77 9.3.3 8.%	· · · · · · · · · · · · · · · · · · ·		1.277 933 3.276 21.527 5,40 6,76 90 2,96 5,500 4,952 3,456 1.496	1.277 933 3.276 2.1.527 5,71 7,14 85 2,80 5.207 5.540 3.866 1.674	1.277 933 3.276 21.527 6,01 7,52 81 2,66 4.943 6.068	1.277 933 3.276 21.527 6,32 7,90 77 77 6.545 6.545 4.704		1.277 933 3.276 21.527 6,93 8,66 70 70 2,31 4.290 7.373	21.577 933 3.276 21.527 7,23 9,04 67 2,21 4.109 7.735 5.398	1.277 933 3.276 21.527 7,54 9,43 65 2,12 3.943 8.068	1.277 933 3.276 21.527 7,84 9,81 62 2,04 3.789 8.374	1.277 933 3.276 21.527 8,15 10,19 60 1,96 3.648 8.658 6.042			
Custos Administrativos R\$/mės 933 933 933 933 933 832 833 833 833 833 833 833 833 833 8	8 8 8			933 9376 21.527 21.527 5,40 6,76 90 2,96 5.500 4.952 3.456	933 3.276 21.527 5,71 7,14 85 2,80 5.207 5.540 3.866 1.674	933 3.276 21.527 6,01 7,52 81 2,66 4.943 6.068	933 3.276 21.527 6,32 7,90 77 77 2.53 4.704 6.545 4.568		933 3.276 21.527 6,93 8,66 70 2,31 4.290 7.373 5.145	933 3.276 21.527 7,23 9,04 67 2,21 4.109 7.735 5.398	3.276 21.527 7,54 9,43 65 2,12 3.943 8.068	933 3.276 21.527 7,84 9,81 62 2,04 3.789 8.374	933 3.276 21.527 8,15 10,19 60 1,96 3.648 8.658 6.042			
Custo de Financiamento % aa R\$/mês 8% 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.276 3.277 21.527 21.527 21.527 21.527 21.527 21.527 21.527 21.527 21.527 21.527 21.527 21.527 21.527 21.527 21.527 3.24	88			3.276 21.527 2.40 6,76 90 2.96 5.500 4.952 3.456 1.496	3.276 21.527 5,71 7,14 85 2,80 5.207 5.540 3.866 1.674	3.276 21.527 6,01 7,52 81 2,66 4.943 6.068	3.276 21.527 6,32 7,90 77 2,53 4.704 6.545 4.568		3.276 21.527 6,93 8,66 70 2,31 4.290 7.373 5.145	3.276 21.527 7,23 9,04 67 2,21 4.109 7.735 5.398	3.276 21.527 7,54 9,43 65 2,12 3.943 8.068	3.276 21.527 7,84 9,81 62 2,04 3.789 8.374 5.844	3.276 21.527 8,15 10,19 60 1,96 3.648 8.658 6.042			
Sub-Total Custos - fixos R\$/mēs 21.527 21.527 21.527	4			5,40 6,76 90 2,96 5.500 4.952 3.456	5,71 7,14 85 2,80 5,207 5,540 3,866 1,674	6,01 7,52 81 81 2,66 4.943 6.068	6,32 7,90 77 2,53 4,704 6,545 6,545		6,93 8,66 70 2,31 4.290 7.373 5.145	7,23 9,04 67 2,21 4.109 7.735 5.398	7,54 9,43 65 2,12 3.943 8.068	7,84 9,81 62 2,04 3.789 8.374 5.844	8,15 10,19 60 1,96 3.648 8.658 6.042	_		
h/ciclo - efetivo 4,49 4,79 5,10 c/clo/mes c/clos/mes c/clos/mes 3,56 3,34 3,14 m/es km/més 2,710 3,552 4,294 km/més km/més 1,891 2,479 2,997 km/més				5,40 6,76 2,96 5.500 4.952 3.456	5,71 7,14 85 2,80 5.207 5.540 3.866 1.674	6,01 7,52 81 2,66 4.943 6.068	6,32 7,90 77 2,53 4.704 6.545 4.568		6,93 8,66 70 2,31 4.290 7.373 5.145	7,23 9,04 67 2,21 4.109 7.735 5.398	7,54 9,43 65 2,12 3.943 8.068	7,84 9,81 62 2,04 3.789 8.374 5.844	8,15 10,19 60 1,96 3.648 8.658 6.042			
h/ciclo - efetivo 4,49 4,79 5,10 h/ciclo - nominal 5,61 5,99 6,37 ciclos/mês 3,66 3,34 3,14 t/mês 2,710 3,552 4,294 km/mês 2,710 3,552 4,294 km/mês 2,710 3,552 4,294 km/mês 2,710 3,552 4,294 km/mês 4,710 3,552 4,294 km/mês 4,710 3,552 4,294 km/mês 4,710 3,552 4,294 km/mês 4,710 3,552 km/mês 1,073 1,298 km/mês 1,773 1,298 km/mês 1,773 1,298 km/mês 1,476 5,867 7,093				5,40 6,76 2,96 5.500 4.952 3.456	5,71 7,14 85 2,80 5.207 5.540 3.866 1.674	6,01 7,52 81 2,66 4.943 6.068	6,32 7,90 7,7 2,53 4,704 6,545 4,568	6,62 8,28 73 2,42 4.487 6.978 2.109	6,93 8,66 70 2,31 4.290 7.373 5.145	7,23 9,04 67 2,21 4.109 7.735 5.398	7,54 9,43 65 2,12 3.943 8.068	7,84 9,81 2,04 3.789 8.374 5.844	8,15 10,19 60 1,96 3.648 8.658 6.042	8,45 10,57 1,89 3.516 8.921 6.226 2.696		
h/cido - nominal 5,61 5,99 6,37 clclos/mies 1,08 101 95 clclos/dia 2,34 3,14 3,14 clclos/dia 3,65 3,34 3,14 clclos/dia 6,625 6,200 8,297 km/més km/més 1,891 2,479 2,997 hacadame + Terra km/més R\$/més 1,773 1,298 R\$/més 1,073 1,298				6,76 90 2,96 5.500 4.952 3.456	7,14 85 2,80 5.207 5.540 3.866 1.674	7,52 81 2,66 4.943 6.068	7,90 77 2,53 4.704 6.545 4.568	8,28 73 2,42 4.487 6.978 4.870 2.109	8,66 70 2,31 4.290 7.373 5.145	9,04 67 2,21 4.109 7.735 5.398	9,43 65 2,12 3.943 8.068	9,81 62 2,04 3.789 8.374 5.844	10,19 60 1,96 3.648 8.658 6.042	10,57 58 1,89 3.516 8.921 6.226 2.696		
ciclos/mês 108 101 95 ciclos/dia 3,56 3,34 3,14 95 diolos/dia 1,356 3,34 3,14 3,14 3,14 3,14 4,294 4,294 4,294 4,294 4,294 4,294 4,294 4,294 2,997 4,294 2,997 4,976 2,997 4,976 2,997 4,798 2,732 5,987 7,093 2,732				2,96 5.500 4.952 3.456	85 2,80 5.207 5.540 3.866 1.674	2,66 4.943 6.068	2,53 4.704 6.545 4.568	2,42 4.487 6.978 4.870 2.109	2,31 4.290 7.373 5.145	2,21 4.109 7.735 5.398	2,12 3.943 8.068	2,04 3.789 8.374 5.844	00 1,96 3.648 8.658 6.042	58 1,89 3.516 8.921 6.226 2.696		
ciclos/dia 3,56 3,34 3,14 t/mês 6,622 6,200 5,829 km/mês 2,710 3,552 4,294 Asfalto km/mês 1,891 2,479 2,997 Pheus R\$/mês 1,773 1,298 Pheus R\$/mês 1,774 2,260 2,732 Diesel R\$/mês 4,476 5,867 7,093				2,96 5.500 4.952 3.456	2,80 5.207 5.540 3.866 1.674	2,66 4.943 6.068	2,53 4.704 6.545 4.568	2,42 4.487 6.978 4.870 2.109	2,31 4.290 7.373 5.145	2,21 4.109 7.735 5.398	2,12 3.943 8.068	2,04 3.789 8.374 5.844	1,96 3.648 8.658 6.042	1,89 3.516 8.921 6.226 2.696		
t/mês 6.622 6.20 5.829 km/mês 2710 3.552 4.294 Asfalto km/mês 1.891 2.479 2.997 Macadame + Terral km/mês 819 1.073 1.298 Pheus R\$/mês 1.724 2.260 2.732 Diesel R\$/mês 4.476 5.867 7.093				5.500 4.952 3.456 1.496	5.207 5.540 3.866 1.674	4.943	4.704 6.545 4.568	4.487 6.978 4.870 2.109	4.290 7.373 5.145	4.109 7.735 5.398	3.943	3.789 8.374 5.844	3.648 8.658 6.042	3.516 8.921 6.226 2.696		
Asfalto km/més 2.710 3.552 4.294 Macadame + Terra km/més 1891 2.479 2.997 Pheus R\$/més 1.724 2.260 2.732 Pheus R\$/més 4.476 5.867 7.093				4.952 3.456	5.540 3.866 1.674	6.068	6.545	6.978 4.870 2.109	5.145	7.735	8.068	8.374 5.844	8.658 6.042	8.921 6.226 2.696		
Asfatro km/més 1.891 2.479 2.997 Macadame + Terra km/més 819 1.073 1.298 Pheus R\$/més 1.724 2.260 2.732 Diesel R\$/més R\$/més 7.093				3.456	3.866		4.568	4.870	5.145	5.398	000	5.844	6.042	6.226		
Macadame + Terral km/mês 819 1.073 1.298 Pneus R\$/mês 1.724 2.260 2.732 Diesel R\$/mês 4.476 5.867 7.093			_	1 496	1.674	4.235	7	2.109	0		5.630		2 616	2.696	_	
Pneus R\$/mês 1.724 2.260 2.732 Diesel R\$/mês 4.476 5.867 7.093				2		1.833	1.978		2.772	2.337	2.438	2.530	2.0.2		ŀ	
R\$/mês 1.724 2.260 2.732 R\$/mês 4.476 5.867 7.093			_					_			-					
R\$/mês 4.476 5.867 7.093					3.524	3.860	4.163		4.690	4.920		5.327	5.507			
	R\$/mês R\$/mês				9.150	10.022	10.811		12.178	12.776		13.832	14.300			
37 49 59	R\$/mês		_		9/	84	06		102	106		115	119			
196 236					305	334	360	384	406	426	444	461	476	491	504	517 529
1.315	12		_		1.697	1.859	2.005		2.258	2.369		2.565	2.652			
9.460 11.435					14.752	16.159	17.429		19.635	20.598		22.300	23.055			
30.986 32.962			_		36.279	37.685	38.956	_	41.161	42.124	-	43.826	44.582	_	Ļ	Ĺ
2.479 2.637	8,00%		_		2.902	3.015	3.116		3.293	3.370		3.506	3.567			
33.465 35.598		• • •	_		39.181	40.700	42.072		44.454	45.494		47.332	48.148			
		_	⊢								⊢					
0,000 % ICMS		-			1	1		'			'	'	'		'	,
% 9,00% 207 223 237	%00'6					271		289	296	303	310	316	321			
25,00% 575 620 659	25,00%					754		802	823	842	860	877	892			
4,75% 1.587 1.711 1.820	4,75%					2.081		2.215	2.273	2.326	2.375	2.420	2.462			
2,00% 649 700 745	2,00%		_		_	852		906	930	952	972	066	1.007			
Custo Total R\$/mês 34,060 36,719 39,060 41.1				41.136	42.991	44.657	46.163	47.530	48.776	49.918	20.967	51.935	52.830	53.660	54.433 5	55.154 55.827
6,70					_	9,04		10,59	11,37	12,15	12,93	13,71	14,48			

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Rodotrem para os cenários I, II e V.

		Velemen								900	month pool								
Premissas Comuns	M	Valores		Ī	Ì						1	ŀ					ŀ	ŀ	
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5	52,5	57,5	62,5 6	67,5	72,5	77,5	82,5	87,5	92,5
Custo Fixo																			
Mão-de-Obra	bra R\$/mês	12.279	12.279	12.279	12.279	12.279	12.279												2.279
Depreciação	ção R\$/mês	3.313	3.313	3.313	3.313	3.313	3.313												3.313
Seguro - Licenciamento	nto R\$/mês	1.204	1.204	1.204	1.204	1.204	1.204												1.204
Custos Administrativos	vos R\$/mês	933	933	933	933	933	933	933			933						933		933
Taxa de Juros % aa	aa R\$/mês	8%	3.276	3.276	3.276	3.276	3.276												3.276
Sub-Total Custos - fixos			21.005	21.005	21.005	21.005	21.005		21.005 2	21.005 2		21.005 2	21.005 21	21.005 2	21.005 2	21.005 2		21.005 2	21.005
Produção Mensal												-							
	h/ciclo - efetivo		4,50	4,82	5,13	5,4	5,75	90'9											9,48
	h/ciclo - nominal		5,63	6,02	6,41	6,80	7,19	7,58											11,85
	ciclos/mês		108	101	92	88	82	8											51
	ciclos/dia		3,55	3,32	3,12	2,94	2,78	2,64											1,69
	t/mês		6.394	5.981	5.618	5.296	5.010	4.753											3.038
	km/mês		2.701	3.537	4.272	4.922	5.502	6.023											9.495
Asfalto	alto km/mês		1.885	2.468	2.981	3.435	3.840	4.203						5.784			6.325		6.626
cascalho + Terra	ırra km/mês		816	1.069	1.291	1.487	1.663	1.820	1.962	2.091	2.208	2.315	2.414		2.588	2.666		2.806	2.869
Custo Variável																			
Pneus	eus R\$/mês		1.718	2.250	2.717	3.131	3.500												6.040
Diesel			4.461	5.842	7.055	8.130	9.088	9.948	10.724	11.428 1.	12.069 12	12.655 1:	13.194	13.690 14	14.149	14.574	14.970	15.339 1	15.683
Lubrificantes	tes R\$/mês		37	49	26	89	9/												131
Lavagem	em R\$/mês		149	195	235	271	303												523
Manutenação	ção R\$/mês		731	957	1.156	1.332	1.489												2.569
Sub-Total Custos - Variáveis	eis R\$/mês		7.095	9.292	11.222	12.931	14.456					-	_						4.946
Custo - Fixo + Variável	R\$/mês		28.100	30.297	32.227	33.936	35.460												5.950
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.248	2.424	2.578	2.715	2.837												3.676
Custo Total	R\$/mês		30.348	32.721	34.805	36.651	38.297					_	_						9.626
Impostos																			
Ō	<u> </u>	%00,0	'	'	'	'	'	_				_	_	_	_			_	'
CSFI	_	8,00%	202	218	232	244	255	265	274	282	588	296	302	308	313	318	323	327	331
		25,00%	295	909	645	629	200												919
PIS/COFINS		4,75%	1.552	1.673	1.779	1.874	1.958												2.537
	ISS %	2,00%	635	685	728	767	801	Α.	_				_	_	~			<u>,</u>	1.038
Custo Total	R\$/mês		33.299	35.902	38.189	40.215	42.021								_				4.452
Custo por tonelada	R\$/t		5,21	6,00	6,80	7,59	8,39	_		_			_		_		16,34	4	17,93

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Bitrem para os cenários I, II e V.

Premissas Comuns	MI	Valores								Bit	Bitrem								
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5	52,5	57,5	62,5	67,5	72,5	77,5	82,5	87,5	92,5
Custo Fixo								_		_	-			_	_				
Mão-de-Obra	a R\$/mês	12.279	12.279	12.279	12.279	12.279				_									2.279
Depreciação	R\$/mês	3.259	3.259	3.259	3.259	3.259				_									3.259
Seguro - Licenciamento		1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.182
Custos Administrativos		933	933	933	933	933													933
Taxa de Juros % aa		8%	3.276	3.276	3.276	3.276													3.276
Sub-Total Custos - fixos			20.929	20.929	20.929	20.929				_					-				0.929
Produção Mensal										_									
	h/ciclo - efetivo		4,46	4,75	5,04	5,33	5,63	5,92								8,26			9,14
	h/ciclo - nominal		5,57	5,94	6,30	6,67	7,04	7,40								10,33			11,42
	ciclos/mês		109	102	96	91	98	82								29			53
	ciclos/dia		3,59	3,37	3,17	3,00	2,84	2,70								1,94			1,75
	t/mês		5.050	4.739	4.464	4.220	4.000	3.803								2.726			2.464
	km/mês		2.729	3.585	4.342	5.017	5.621	6.165								9.132			9.853
Asfalto	km/mês		1.904	2.502	3.030	3.501	3.922	4.302	4.646	4.959	5.246	5.508	5.750	5.974	6.180	6.373	6.552	6.719	6.876
cascalho + Terra	a km/mês		825	1.083	1.312	1.516	1.698	1.863								2.759			2.977
Custo Variável							-								-			-	
Pneus	s R\$/mês		1.348	1.77.1	2.145	2.478	2.776	3.045	3.288		3.712	3.898		4.227	4.374		4.637	4.755	4.866
Diesel			4.229	5.556		7.774													5.270
Lubrificantes	s R\$/mês		38	49		69													136
Lavagem			150	197		276				391			453			503			542
Manutenação			730	096		1.343													2.637
Sub-Total Custos - Variáveis	s R\$/mês		6.495	8.533		11.940													3.451
Custo - Fixo + Variável	R\$/mês		27.424	29.462		32.868	-		_	_		_	_	Ė	-	_		-	4.379
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.194	2.357		2.629													3.550
Custo Total	R\$/mês		29.618	31.819		35.498								_					7.930
Impostos							_												
ICMS		0,00%	•				_		_	_									
CSIT	%	%00'6	197	212	225			256			279		292	297		307		316	320
些	%	25,00%	548	289	625														888
PIS/COFINS		4,75%	1.514	1.627	1.726														2.450
ISS		2,00%	620	999	200	743	775		831	855	_	897			949		978		1.003
Custo Total	R\$/mês		32.497	34.913	37.048	-	Ш	,		Ĺ				_			Ш		2.590
Custo por tonelada	R\$/t		6,44	7,37	8,30														21,34

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Romeu e Julieta para os cenários I, II e V.

Premiseas Comuns	MI	Valores								Romeu e Julieta	ulieta								
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5 5	52,5 5	57,5 6	62,5 6	67,5 7	72,5 7	77,5 8	82,5 87,5	5 92,5	. 2
Custo Fixo														_					
Mão-de-Obra		12.279	12.279	12.279	12.279	12.279	12.279	12.279											579
Depreciação		3.018	3.018	3.018	3.018	3.018	3.018	3.018											018
Seguro - Licenciamento		1.142	1.142	1.142	1.142	1.142	1.142	1.142											142
Custos Administrativos	s R\$/mês	933	933	933	933	933	933	933											933
Taxa de Juros % aa	a R\$/mês	8%	3.276	3.276	3.276	3.276	3.276	3.276											276
Sub-Total Custos - fixos	s R\$/mês		20.648	20.648	20.648	20.648	20.648	20.648	20.648	20.648 2	20.648 20	20.648 20	20.648 2	20.648 20	20.648 20	20.648 20	20.648 20.648	48 20.648	648
Produção Mensal														_			-		
	h/ciclo - efetivo		4,44	4,73	5,01	5,30	5,58	5,87	6,15									_	,0
	h/ciclo - nominal		5,55	5,91	6,27	6,62	6,98	7,34	7,69						_				,27
	ciclos/mês		110	103	26	92	87	83	79										25
	ciclos/dia		3,60	3,38	3,19	3,02	2,87	2,73	2,60						_			_	,78
	t/mês		5.055	4.749	4.479	4.237	4.020	3.825	3.647						_				491
	km/mês		2.739	3.603	4.369	5.052	5.665	6.218	6.720									_	686
Asfalto	o km/mês		1.912	2.515	3.049	3.525	3.953	4.339	4.690	5.009	5.301	5.569	5.816	6.045	6.257	6.454 6	6.638 6.810	_	6.971
cascalho + Terra	a km/mês		828	1.089	1.320	1.526	1.712	1.879	2.030						_				018
Custo Variável																			
Pneus			1.353	1.780	2.158	2.495	2.798	3.071											933
Diesel			4.245	5.584	6.770	7.829	8.779	9.636											481
Lubrificantes			38	20	09	20	78	86											138
Lavagem			151	198	240	278	312	342											220
Manutenação	o R\$/mês		069	806	1.101	1.273	1.427	1.567											217
Sub-Total Custos - Variáveis	s R\$/mês		6.477	8.519	10.329	11.944	13.393	14.702						_			-	_	618
Custo - Fixo + Variável	R\$/mês		27.125	29.167	30.977	32.592	34.041	35.350									_		997
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.170	2.333	2.478	2.607	2.723	2.828	2.923	3.009	3.089	3.161	3.228	3.290	3.348	3.401	3.451 3.498	98 3.541	241
Custo Total	R\$/mês		29.295	31.501	33.455	35.199	36.765	38.178	Ī										808
Impostos																	-	_	
ICMS		0,00%	'		1	ı			_			_			_				1
CSFT	%	%00'6	195	210	223	235	245												319
₩		25,00%	545	583	620	652	681									820			885
PIS/COFINS		4,75%	1.498	1.610	1.710	1.800	1.880												444
ISS		2,00%	613	629	700	736	269	799	826	850	872	893	912	929	946	_	975 988		000
Custo Total	R\$/mês		32.143	34.564	36.708	38.622	40.339									50.382 51			52.456
Custo por tonelada	R\$/t		6,36	7,28	8,20	9,12	10,03							16,47	17,38 1	8,30 1			90,

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Tritrem para o cenário III.

Premiseas Comins	MI	Valores								Tritrem	m							
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5 4.	47,5 52,5	5 57,5	5 62,5	5 67,5	72,5	77,5	82,5	87,5	92,5
Custo Fixo								_		_			_					
Mão-de-Obra	a R\$/mês	12.279	12.279	12.279	12.279													12.279
Depreciação	o R\$/mês	3.762	3.762	3.762	3.762										_			3.762
Seguro - Licenciamento		1.277	1.277	1.277	1.277	1.277	1.277	1.277	1.277	1.277 1.277	1.277	1.277	1.277	77 1.277	77 1.277	7 1.277	1.277	1.277
Custos Administrativos	s R\$/mês	933	933	933	933										_			933
Custo de Financiamento % aa	a R\$/mês	8%	3.276	3.276	3.276										_			3.276
Sub-Total Custos - fixos	s R\$/mês		21.527	21.527	21.527					•				-	_			21.527
Produção Mensal								_				_						
	h/ciclo - efetivo		4,48	4,79	2,09		_		_	_		_						9,32
	h/ciclo - nominal		2,60	5,98	6,36	6,74	7,12	7,49	7,87	8,25 8	8,63 9,01	01 9,38	38 9,76	76 10,14	10,52	10,90	11,28	11,65
	ciclos/mês		109	102	96				_	_					_			52
	ciclos/dia		3,57	3,34	3,14				_						_			1,72
	t/mês		6.631	6.212	5.843					_								3.189
	km/mês		2.714	3.559	4.304							_						9.658
Asfalto	o km/mês		1.894	2.484	3.004							_			_			6.739
Macadame + Terra	a km/mês		820	1.075	1.301		_								_			2.918
Custo Variável																		
Pneus	s R\$/mês		1.617	2.121	2.565													5.756
Diesel			4.412	5.786	6.997	8.072	9.033	9.897	10.678	11.387 12.034	12.627	27 13.172	72 13.675	75 14.140	14.572	14.974	15.349	15.700
Lubrificantes	s R\$/mês		37	49	26													133
Lavagem			149	196	237													532
Manutenação		12	793	1.040	1.257													2.821
Sub-Total Custos - Variáveis	s R\$/mês		7.009	9.192	11.116	_					_							24.941
Custo - Fixo + Variável	R\$/mês		28.535	30.718	32.642					_			_					46.468
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.283	2.457	2.611													3.717
Custo Total	R\$/mês		30.818	33.176	35.254		-		_	_		_	_					50.185
Impostos																		
ICMS		%00'0										_					_	
CSIT		%00'6	202															
正		25,00%	571															
PIS/COFINS		4,75%	1.576															
SSI	%	2,00%	645	694	738	276	811	842	870	895	918 940	940 959	959 977	77 994	94 1.010	10 1.024	1.037	1.050
Custo Total	R\$/mês		33.814									_				- 1	_	_
Custo por tonelada	R\$/t		5,10									_						

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Rodotrem para o cenário III.

Premissas Comins	MI	Valores								Kode	Kodotrem								
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5 5	52,5 5	57,5	62,5 6	67,5 7	72,5	77,5	82,5	87,5	92,5
Custo Fixo														_					
Mão-de-Obra	ra R\$/mês	12.279	12.279	12.279	12.279														2.279
Depreciação	fo R\$/mês	3.313	3.313	3.313	3.313				_										3.313
Seguro - Licenciamento	to R\$/mês	1.204	1.204	1.204	1.204														1.204
Custos Administrativos	s R\$/mês	933	933	933	933	933													933
Taxa de Juros % aa	aa R\$/mês	%8	3.276	3.276	3.276														3.276
Sub-Total Custos - fixos	S R\$/mês		21.005	21.005	21.005		21.005	21.005	21.005 2	21.005 21	21.005 21	21.005 2	21.005 21	21.005 2	21.005 2	21.005 2	21.005 27	21.005 2	21.005
Produção Mensal							_	_	_	_		_		_		_	_		
	h/ciclo - efetivo		4,50	4,81	5,11	5,42	5,73	6,04											9,43
	h/ciclo - nominal		5,62	6,01	6,39	6,78	7,17	7,55											11,79
	ciclos/mês		108	101	98	6	82	81											25
	ciclos/dia		3,56	3,33	3,13	2,95	2,79	2,65											1,70
	t/mês		6.403	5.992	5.630	5.310	5.024	4.768											3.053
	km/mês		2.705	3.543	4.281	4.935	5.518	6.042											9.542
Asfalto	to km/mês		1.887	2.473	2.988	3.444	3.851	4.216	4.546	4.846	5.119	5.368	5.598	5.809	6.005	6.186	6.355 (6.512	6.659
cascalho + Terra	ra km/mês		817	1.071	1.294	1.491	1.667	1.826											2.883
Custo Variável												_		_					
Pneus	us R\$/mês		1.612		2.552														5.687
Diesel	el R\$/mês		4.397		6.959														5.513
Lubrificantes	ss R\$/mês		37		26														131
Lavagem	m R\$/mês		149		236				329					458			501		525
Manutenação	fo R\$/mês		869		1.105														2.462
Sub-Total Custos - Variáveis	is R\$/mês		6.893		10.910				_										4.319
Custo - Fixo + Variável	R\$/mês		27.897		31.915				_			_							5.323
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.232	2.403	2.553	2.686	2.805	2.912		3.096	3.176	3.249	3.316	3.378	3.435	3.488	3.537	3.583	3.626
Custo Total	R\$/mês		30.129	_	34.468		4	_	40.616 4	_	_	_	_	_	_	_	4	_	8.949
Impostos		ò																	
ICMS		0,00%	' ?	' 6	' 6	' 9	' (_				_						' 6
CSII		9,00%	201	216	230	242	252												326
	%	25,00%	228	601	638	672	701	728	752	774	794	812	829	844	828	872	884	968	906
PIS/COFINS		4,75%	1.540	1.658	1.762	1.854	1.936												2.503
ISS		2,00%	630	629	721	6	Α.	3		+	_	8	_	4	0	10			1.024
Custo Total	R\$/mês		33.059	35.592	37.819	39.794	41.555	43.137 4	44.565 4	45.861 47	47.042 48	48.122 4		50.030 50	50.877 5		52.392 53	53.072 53	53.709
Custo por tonelada	R\$/t		5,16	5,94	6,72	7,49	8,27	9,05	9,82	10,60	11,38	12,16	12,93	13,71	14,49	15,26	16,04		17,59

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Bitrem para o cenário III.

Premissas Comins	MI	Valores								Bit	Bitrem								
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5	52,5	57,5	62,5	67,5	72,5	77,5	82,5	87,5	92,5
Custo Fixo							_	_	_			_				_			
Mão-de-Obra	ora R\$/mês	12.279	12.279	12.279	12.279														12.279
Depreciação	ão R\$/mês	3.259	3.259	3.259	3.259														3.259
Seguro - Licenciamento	nto R\$/mês	1.182	1.182	1.182	1.182														1.182
Custos Administrativos	os R\$/mês	933	933	933	933														933
Taxa de Juros % aa	aa R\$/mês	%8	3.276	3.276	3.276														3.276
Sub-Total Custos - fixos	os R\$/mês		20.929	20.929	20.929	20.929	20.929	20.929	20.929 2	20.929 20	20.929 20	20.929 2	20.929	20.929 2	20.929	20.929	20.929	20.929	20.929
Produção Mensal							_	_	_			_				_			
	h/ciclo - efetivo		4,45	4,74	5,03	5,33	2,62	5,91	6,20						7,94	8,23	8,52	8,81	9,10
	h/ciclo - nominal		5,57	5,93	6,29	99'9	7,02	7,38	7,75						9,93	10,29	10,65	11,02	11,38
	ciclos/mês		109	103	6	9	87	82	26						61	29	22	22	53
	ciclos/dia		3,59	3,37	3,18	3,00	2,85	2,71	2,58						2,01	1,94	1,88	1,82	1,76
	t/mês		5.055	4.745	4.471	4.227	4.008	3.811	3.632						2.835	2.735	2.641	2.554	2.473
	km/mês		2.732	3.590	4.349	5.026	5.632	6.179	6.674						8.885	9.162	9.421	9.662	9.888
Asfalto	Ito km/mês		1.906	2.505	3.035	3.507	3.930	4.312	4.657	4.972	5.260	5.524	2.767	5.992	6.200	6.394	6.574	6.743	6.900
cascalho + Terra	rra km/mês		825	1.085	1.314	1.519	1.702	1.867	2.017						2.685	2.768	2.847	2.919	2.988
Custo Variável												_				_			
Pneus	us R\$/mês		1.263	1.659	2.010														4.570
Diesel			4.166	5.474	6.632														15.078
Lubrificantes	es R\$/mês		38	49	09														136
Lavagem	em R\$/mês		150	198	239	277	310	340	367	392	415	436	455	473	489	204	518	532	544
Manutenação			969	915	1.109														2.521
Sub-Total Custos - Variáveis	eis R\$/mês		6.313	8.296	10.051	_					_	_			_	_			22.850
Custo - Fixo + Variável	R\$/mês		27.241	29.225	30.979							_						_	43.779
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.179	2.338	2.478														3.502
Custo Total	R\$/mês		29.420	31.563	33.457														47.281
Impostos																_			
ICMS	<u> </u>	%00'0					_	_				'				_	_	•	'
CSFI	% TT	%00'6	196	210	223	234	244		262	269	276	282	288	294	588	303	307	311	315
		25,00%	545									784						865	876
PIS/COFINS		4,75%	1.504									5.166						2.388	2.417
31	lss %	2,00%	616					796				886							989
Custo Total	R\$/mês		32.281									5.477 4							51.878
Custo por tonelada	R\$/t		6,39				_	10,95	11,86			14,60		_		_	19,16	20,07	20,98

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Romeu e Julieta para o cenário III.

Premissas Comuns	MI	Valores								Komeu e Julieta	Julieta								
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5	52,5 5	57,5 62,5		67,5 72	72,5 7	77,5 8	82,5 87,5	5 92,5	,5
Custo Fixo														-	-	-	-		
Mão-de-Obra		12.279	12.279	12.279	12.279	12.279	12.279	_									_		279
Depreciação		3.018	3.018	3.018	3.018	3.018	3.018										-		018
Seguro - Licenciamento		1.142	1.142	1.142	1.142	1.142	1.142												142
Custos Administrativos	s R\$/mês	933	933	933	933	933	933	_									_		933
Taxa de Juros % aa	a R\$/mês	8%	3.276	3.276	3.276	3.276	3.276												276
Sub-Total Custos - fixos	s R\$/mês		20.648	20.648	20.648	20.648	20.648	20.648	20.648 2	20.648 2	20.648 20	20.648 20	20.648 20	20.648 20.	20.648 20	20.648 20	20.648 20.648	48 20.648	648
Produção Mensal														_					
	h/ciclo - efetivo		4,44	4,72	2,00	5,29	5,57	5,85	6,14	6,42							_		1,97
	h/ciclo - nominal		5,54	5,90	6,25	6,61	96'9	7,32	7,67	8,02							_		,21
	ciclos/mês		110	103	97	92	87	83	79	9/									24
	ciclos/dia		3,61	3,39	3,20	3,03	2,87	2,73	2,61	2,49							_		,78
	t/mês		5.061	4.757	4.488	4.247	4.031	3.836	3.659	3.497									503
	km/mês		2.743	3.610	4.378	5.064	5.680	6.237	6.742	7.202									980
Asfalto	km/mês		1.914	2.519	3.055	3.534	3.964	4.352	4.705	5.026	5.320	5.591 5	5.840 6	6.070 6.	6.284 6	6.483 6	6.669 6.842	7.005	200
cascalho + Terra	km/mês		829	1.091	1.323	1.530	1.716	1.884	2.037	2.176							_		033
Custo Variável														_					
Pneus			1.268	1.668	2.024	2.341	2.625												940
Diesel			4.183	5.504	9.99	7.722	8.662												306
Lubrificantes	s R\$/mês		38	20	09	20	78												138
Lavagem			151	199	241	279	313												552
Manutenação			629	867	1.052	1.216	1.364												411
Sub-Total Custos - Variáveis	s R\$/mês		6.298	8.288	10.052	11.627	13.042							_					047
Custo - Fixo + Variável	R\$/mês		26.946	28.936	30.700	32.275	33.690												995
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.156	2.315	2.456	2.582	2.695	2.797	2.890	2.975	3.052	3.123 3	3.189	3.250 3.	3.306	3.358	3.407 3.453	53 3.496	496
Custo Total	R\$/mês		29.102	31.251	33.156	34.858	36.386							_		-			191
Impostos		0																	
ICMS	% >	0,00,0	, 24	' 000	, ,	' ' ' ' '	' 070	' (1)	· 000	- 090								_	, n
ייני. קרי		00,00	1 0	200	7 7 7	202	7 1	202	700	277									2 2
<u>Y</u>		%00,62	539	6/6	614	646	6/4	669	7.23	744									4/8
PIS/COFINS		4,75%	1.488	1.598	1.695	1.782	1.860	1.931	1.995	2.053	2.107	2.156 2	2.201 2	2.243 2.	2.282 2	2.318	2.352 2.383		2.413
SSI		2,00%	609	654	694	729	761							_	4	<u>~</u> '	~!		987
Custo Total	R\$/mês		31.932	34.289	36.380	38.247	39.923		42.812 4		45.212 46		4		4	4	4)	2	280
Custo por tonelada	R\$/t		6,31	7,21	8,11	9,00	9,90	10,80	11,70	12,60		14,40	15,30	16,19 17	17,09	17,99	18,89 19,79	┙	20,69

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Tritrem para o cenário IV

		I																	
Premiseas Comins	WIT	Valores								Trit	ritrem								
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5 5	52,5 5	57,5	62,5	. 9,19	72,5	2,77	82,5	87,5	92,5
Custo Fixo																			
Mão-de-Obra	a R\$/mês	12.279	12.279	12.279	12.279	12.279			_			_			_			`	2.279
Depreciação		3.991	3.991	3.991	3.991	3.991													3.991
Seguro - Licenciamento		1.352	1.352	1.352	1.352	1.352	1.352		1.352	1.352	1.352	1.352	1.352	1.352	1.352	1.352	1.352	1.352	1.352
Custos Administrativos		933	933	933	933	933													933
Custo de Financiamento % aa		8%	3.476	3.476	3.476	3.476		3.476						3.476					3.476
Sub-Total Custos - fixos	s R\$/mês		22.031	22.031	22.031		22.031		22.031 2	22.031 22	22.031 22			22.031 2	•		22.031 2	•••	22.031
Produção Mensal																			
	h/ciclo - efetivo		4,45	4,74	5,03	5,32	5,61	5,91	6,20		6,78	7,07			7,94	8,23		8,81	9,10
	h/ciclo - nominal		5,57	5,93	6,29	99'9	7,02	7,38		8,11			9,20	9,56		10,29	10,65		11,38
	ciclos/mês		109	103	26	91	87	82								29			53
	ciclos/dia		3,59	3,37	3,18	3,00	2,85	2,71								1,94			1,76
	t/mês		9.676	6.267	5.905	5.583	5.294	5.034								3.612			3.266
	km/mês		2.732	3.590	4.350	5.027	5.633	6.180								9.165			9.892
Asfalto			1.906	2.506	3.036	3.508	3.931	4.313								96:3			6.903
Macadame + Terra	a km/mês		825	1.085	1.314	1.519	1.702	1.867								2.769			2.989
Custo Variável																			
Pneus			1.738	2.284	2.767	3.197				4.533		5.037		5.464	5.653			6.148	6.292
Diesel			4.916	6.461	7.828						<u> </u>	_			•		_	`	17.800
Lubrificantes			38	49	09					86			114	118		126	130		136
Lavagem			150	198	239	277	310	340				436	455		489	504			544
Manutenação	o R\$/mês	12	903	1.186	_						2.491			2.838			3.114	3.194	3.269
Sub-Total Custos - Variáveis	s R\$/mês		7.745	10.179	12.331						21.373 22	``		24.348 2			26.715 2	_	28.041
Custo - Fixo + Variável	R\$/mês		29.776	32.210		36.281	••				43.404 44		45.466 4	46.380 4		48.013	_		50.072
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.382	2.577	2.749				3.276	3.379								_	4.006
Custo Total	R\$/mês		32.158	34.787		39.183	41.040 4	42.715 4		_	46.877 48	48.036 49	49.103 50	50.090 5	51.004	51.854	52.646 5	53.386 5	54.078
Impostos																			
ICMS		%00'0			'	•		•					_		_				'
CSFT	%	%00'6	214	232	247	261	274	285	295	304		320		334		346		356	361
₩.		25,00%	296	644	289	726		791								096			1.001
PIS/COFINS		4,75%	1.644	1.778	1.897	2.003		2.184			2.397					2.651			2.765
ISS		2,00%	673	728	776	0	6	_		_			Ĺ	_				_	1.131
Custo Total	R\$/mês		35.285	38.169	40.720	42.993	45.031 4	46.868 4	48.533 5	50.049 51	51.434 52	52.706 53	53.878 5	54.960 5	55.964		57.765 5	58.576 5	59.336
Custo por tonelada	R\$/t		5,29	6,09	6,90	7,70	8,51	9,31	10,12	10,92	11,73 1	12,53	13,34	14,14	14,95	15,75	16,56	17,36	18,17

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Rodotrem para o cenário IV

Premissas Comuns	MO	valores								Road	Rodolreili								
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5 5	52,5 5	57,5	62,5 6	67,5	72,5	77,5	82,5	87,5	92,5
Custo Fixo					-		-			_	_	\vdash	Η-		_	-			
Mão-de-Obra		12.279	12.279	12.279															2.279
Depreciação	R\$/mês	3.543	3.543	3.543															3.543
Seguro - Licenciamento	R\$/mês	1.279	1.279	1.279															1.279
Custos Administrativos		933	933	933			933		933										933
Taxa de Juros % aa	R\$/mês	%8	3.476	3.476															3.476
Sub-Total Custos - fixos	R\$/mês		21.509	21.509	21.509	21.509		21.509 2		21.509 21	21.509 21	21.509 2	21.509 27	21.509 2	21.509 2	21.509 2	21.509 2	21.509 2	21.509
Produção Mensal					_		-		Н		<u> </u>	_	<u> </u>		_	_			
	h/ciclo - efetivo		4,47	4,76	2,06	5,36	5,65												9,21
	h/ciclo - nominal		5,58	5,96	6,33	6,70	7,07												11,51
	ciclos/mês		109	102	96	91	98												53
	ciclos/dia		3,58	3,36	3,16	2,99	2,83												1,74
	t/mês		6.447	6.046	5.692	5.377	5.095												3.128
	km/mês		2.723	3.575	4.328	4.997	5.596												9.778
Asfalto	km/mês		1.900	2.495	3.020	3.487	3.905	4.282	4.622	4.932	5.215	5.475	5.713	5.934 (6.138	6.328	6.504	699.9	6.823
cascalho + Terra	ı km/mês		823	1.080	1.308	1.510	1.691												2.954
Custo Variável							_					_				_	_		
Pneus					2.753							4.990							6.220
Diesel					7.788							_							7.595
Lubrificantes					09							_							135
Lavagem	R\$/mês		150		238							_							538
Manutenação				1.051	1.272	1.468	1.644	1.803	1.946	2.077	2.196	_	2.406	2.499	2.585	2.664	2.739	2.808	2.873
Sub-Total Custos - Variáveis	s R\$/mês		7.620		12.110	_	_			_						_	_		7.361
Custo - Fixo + Variável	R\$/mês		_		33.620		_					_				_	_		8.870
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%										3.477							3.910
Custo Total	R\$/mês		31.460			38.332	_	_		44.589 45		_	-				51.398 52	52.112 5	2.780
Impostos		0																	
CMS		0,00%		1	1	1	•								_				
CSFT	%	%00'6	210	227	242	256	268												352
<u>R</u>		25,00%	583	630	672	710	743												977
PIS/COFINS		4,75%	1.608	1.740	1.856	1.960	2.052	2.136	2.211	2.280	2.342	2.400	2.453			2.589	2.628	2.664	2.698
ISS	%	2,00%	658	712	760	802		_			9		4	1.024	1.042				1.104
Custo Total	R\$/mês		34.519	37.345	39.840	42.059	44.045	45.834 4	47.453 4	48.925 50		51.503 5;	52.637 53			55.556 5	56.396 57	57.179 5	57.912
Custo por tonelada	R\$/t		5,35	6,18	7,00	7,82	8,64	9,47	10,29	11,11	11,93		13,58	14,40	15,22	16,05		17,69	18,51

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Bitrem para o cenário IV

										ì								
Premissas Comuns	MI	Valores								BIE	Bitrem							
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5 4	47,5 5	52,5 5	57,5 6,	62,5 6	67,5 7	72,5 7	7,5 82,5	5 87,5	5 92,5
Custo Fixo														_				
Mão-de-Obra	R\$/mês	12.279	12.279	12.279														
Depreciação	R\$/mês	3.489	3.489	3.489														
Seguro - Licenciamento	R\$/mês	1.257	1.257	1.257														
Custos Administrativos	R\$/mês	933	933	933														
Taxa de Juros % aa	R\$/mês	8%	3.476	3.476														
Sub-Total Custos - fixos	R\$/mês		21.433	21.433	21.433	21.433	21.433	21.433 2	21.433 21	21.433 21	21.433 21	21.433 21	21.433 21	21.433 21	21.433 21	21.433 21.433	.33 21.433	33 21.433
Produção Mensal							H	L	_	_	_	_		⊢		_	_	
	h/ciclo - efetivo		4,42	4,70	4,98	5,26	5,54											
	h/ciclo - nominal		5,53	5,88	6,23	6,58	6,92											
	ciclos/mês		110	103	86	93	88											
	ciclos/dia		3,62	3,40	3,21	3,04	2,89											
	t/mês		5.089	4.787	4.519	4.280	4.064											
	km/mês		2.750	3.622	4.396	5.088	5.711											
Asfalto	km/mês		1.919	2.527	3.068	3.551	3.985	4.378	4.735	5.060	5.359 5	5.633	5.886	6.120	6.338	6.540 6.7	6.729 6.906	7.071
cascalho + Terra	km/mês		831	1.094	1.328	1.537	1.725											
Custo Variável					_					-	_	_	_		_			
Pneus	_		1.358	1.789														
Diesel	R\$/mês		4.643	6.115														
Lubrificantes	R\$/mês		38	20														
Lavagem	R\$/mês		151	199														
Manutenação	R\$/mês		800	1.054														
Sub-Total Custos - Variáveis	R\$/mês		6.991	9.207				_	_	-			-					
Custo - Fixo + Variável	R\$/mês		28.424	30.640				_										
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.274	2.451	5.609	2.749	2.876	2.990	3.094	3.189	3.276	3.356	3.430	3.498	3.562	3.621 3.676	3.727	27 3.775
Custo Total	R\$/mês		30.698	33.091			_	_	_	_			_					
Impostos										-	_						_	
ICMS	%	%00'0	-		•	_			-									
CSFT	%	%00'6			235	_												
吊	%	25,00%	_		652	_												
PIS/COFINS	%	4,75%	1.569		1.800	1.898	1.985	2.064	2.136	2.201	2.261	2.316	2.367	2.414 2	2.458 2	2.499 2.537	37 2.572	72 2.606
SSI	%	2,00%	\sim					845			_					3		
Custo Total	R\$/mês		33.683					14.297						51.818 52	٠,	_		
Custo por tonelada	R\$/t		6,62	7,58		9,52		11,45	12,41 1				16,28 1			19,17 20,14		

Base monetária referente a jun/2010

Demonstrativo de cálculo de custos e produção mensal do Romeu e Julieta para o cenário IV

		Velen								0	luliate.								
Premissas Comuns	MO	valores								Rollieu e Juliela	onnera								
		Comuns	12,5	17,5	22,5	27,5	32,5	37,5	42,5	47,5	52,5	57,5	62,5	67,5	72,5	77,5	82,5	87,5	92,5
Custo Fixo														_	-	-	-	-	
Mão-de-Obra	a R\$/mês	12.279	12.279	12.279	12.279	12.279	12.279	12.279	12.279	12.279		12.279	_			_	_		12.279
Depreciação	R\$/mês	3.248	3.248	3.248	3.248	3.248	3.248	3.248	3.248	3.248		3.248				_	_		3.248
Seguro - Licenciamento	R\$/mês	1.217	1.217	1.217	1.217	1.217	1.217	1.217	1.217	1.217		1.217	_			_	_		1.217
Custos Administrativos	s R\$/mês	933	933	933	933	933	933	933	933	933		933				_	_		933
Taxa de Juros % aa	R\$/mês	8%	3.476	3.476	3.476	3.476	3.476	3.476	3.476	3.476		3.476					_		3.476
Sub-Total Custos - fixos	s R\$/mês		21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153	21.153
Produção Mensal															_	-	_	_	
	h/ciclo - efetivo		4,41	4,68	4,95	5,22	2,50	2,77	6,04	6,31	6,58	98'9	7,13	7,40	7,67	7,94			8,76
	h/ciclo - nominal		5,51	5,85	6,19	6,53	6,87	7,21	7,55	7,89	8,23	8,57	8,91	9,25	9,59	9,93			10,95
	ciclos/mês		110	104	86	93	88	8	8	77	74	71	89	99	63	61			26
	ciclos/dia		3,63	3,42	3,23	3,06	2,91	2,77	2,65	2,53	2,43	2,33	2,24	2,16	2,09	2,01			1,83
	t/mês		5.094	4.798	4.534	4.298	4.085	3.892	3.717	3.557	3.410	3.274	3.149	3.034	2.926	2.826			2.562
	km/mês		2.760	3.640	4.423	5.124	5.756	6.328	6.849	7.324	7.761	8.163	8.534	8.878	9.197	9.495		_	10.276
Asfalto	km/mês		1.926	2.540	3.086	3.576	4.017	4.416	4.779	5.111	5.416	5.696	5.955	6.195	6.418	6.626	6.820	7.001	7.171
cascalho + Terra	a km/mês		834	1.100	1.336	1.548	1.739	1.912	2.069	2.213	2.345	2.466	2.579	2.682	2.779	2.869			3.105
Custo Variável														_	_		_	_	
Pneus	s R\$/mês		1.363	1.798	2.184	2.531	2.843	3.125	3.382	3.617							_		5.075
Diesel			4.661	6.146	7.468	8.652	9.718	10.684	11.564	12.367							_		17.351
Lubrificantes	s R\$/mês		38	20	61	71	79	87	8	101					_	_	_	_	141
Lavagem			152	200	243	282	317	348	377	403							_		266
Manutenação	o R\$/mês		200	1.002	1.217	1.410	1.584	1.741	1.885	2.016					_	_	_	_	2.828
Sub-Total Custos - Variáveis	s R\$/mês		6.974	9.196	11.173	12.945	14.541	15.986	17.302	18.504				_	_	_	-	_	25.961
Custo - Fixo + Variável	R\$/mês		28.127	30.348	32.326	34.098	35.694	37.139	38.454	39.626				_	_	\vdash	-	\vdash	17.114
Lucro % Sobre Custo Fixo + Variável	R\$/mês	8,00%	2.250	2.428	2.586	2.728	2.855	2.971	3.076	3.173	3.261	3.342	3.417	3.486	3.551	3.611	3.667	3.720	3.769
Custo Total	R\$/mês		30.377	32.776	34.912	36.825	38.549	40.110	41.531	42.829							_	_	50.883
Impostos																	_		
ICMS		0,00%	'	'	'	'	'	'	'	1	•	1	•	1	-	'	'	_	'
CSTT	_	%00'6	203	219	233	246	257	267	277	286	293	301	308	314	320	325	330		339
眾	%	25,00%	563	209	647	682	714	743	169	793	815	835	854	872	888	903	917	930	942
PIS/COFINS		4,75%	1.553	1.676	1.785	1.883	1.971	2.051	2.123	2.190	2.250	2.307	2.358	2.406	2.451	2.492	2.531		2.601
ISS		2,00%	636	686	730	770	807	839	869	896		_	965		~	_	ω	_	1.065
Custo Total	R\$/mês		33.330	35.963	38.307	40.406	42.297	44.010	45.569	46.993	48.300	49.503	50.614		Н	Н		_	55.830
Custo por tonelada	R\$/t		6,54	7,50	8,45	9,40	10,35	11,31	12,26	13,21	14,17	15,12	16,07	17,02	Н	18,93	19,88	20,84	21,79

Base monetária referente a jun/2010